
A High Population, Fault Tolerant Parallel Raytracer

 James Skorupski Ben Weber Mei-Ling L. Liu
Computer Science Department Computer Science Department Computer Science Department

 Cal Poly State University Cal Poly State University Cal Poly State University
San Luis Obispo, CA 93407 San Luis Obispo, CA 93407 San Luis Obispo, CA 93407

 james.skorupski@gmail.com bgweber@calpoly.edu mliu@calpoly.edu

Abstract

We present hierarchical master-slave
architecture for performing parallel raytracing
algorithms that can support a large population of
participating clients and at the same time maintain
fault tolerance at the application level. Our design
allows for scalability with minimal data redundancy
and maximizes the utilization of each client involved
in the raytracing process. Our results show that this
three-layer system can survive any type or number of
client failures, and any non-concurrent server failures,
while maintaining a near linear increase in
performance with the addition of each new processing
client.

1 DESCRIPTION

 Raytracing algorithms are used widely in the
movie industry to generate photorealistic two-
dimensional images of three-dimensional artificial
worlds. They are extremely computationally intensive,
but ideal for parallelization, because each projected
ray used to generate a pixel in the final image requires
a set of independent calculations that are almost never
related to the calculations for a neighboring ray.
Therefore, each pixel in the scene has the possibility
of being composed completely in parallel among
processors that share the scene data. A simple
implementation of a parallel raytracer would involve a
single server managing the distribution of pixels of a
scene, and a number of clients responsible for
rendering some small portion of the scene. This is a
typical application of the master-slave design pattern
[7]. Unfortunately, the arrangement contains a single
point of failure and a potential for a communications
bottleneck at the master server as the number of
rendering clients increases.

In order to effectively handle any large
number of clients and various failures in the network,
we designed our raytracer in a three-tier structure
composed of a master server, slave servers, and
clients. The master server manages the setup of the
hierarchy and first-level distribution of work to slave
servers, which manage fine-grained distribution to
clients that perform the actual work of rendering
pixels. This structure isolates network communication
in the event of a failure and distributes the overhead
involved in managing a very large number of
rendering clients.

2 BACKGROUND

Raytracing is considered to be an
“embarrassingly parallel” task, and therefore
distributing the work of rendering pixels to multiple
machines is not new to the field of computer graphics
[3, 5, 6]. Our work focuses on the distribution of the
rendering task instead of the rendering itself; therefore
the details of these previous systems are not relevant
to this paper. The concept of a hierarchical master-
slave design and its benefits to the field of distributed
computing is also not new [1, 2, 4]. Our primary
contribution to this body of work is the design and
implementation of a hierarchical master-slave
architecture that specifically addresses fault tolerance.
We present a raytracer that utilizes this design and
demonstrate its suitability for high performance and
high population, distributed applications.

3 DESIGN

Our parallel raytracer is based upon a
variation of the master-slave design pattern. A single
master server acts as a master to a number of slave
server machines. Each of these slave servers, in turn,
interacts with a number of clients. The master server
handles the drawing of the graphical user interface,
ensures proper distribution of the scene data, separates
the image to be rendered into batches of lines for each
server, and is responsible for evenly distributing
incoming clients among slave servers. The slave
servers, on the other hand, manage their own subset of
clients assigned by the master, and are responsible for
managing a batch of work spread amongst these
clients. One of these slave servers acts as the next-of-
kin, which takes over as master in the event that the
master server fails. Finally, the rendering clients are
the workers of the group. After receiving scene data
from the master, they are assigned to a server and
sequentially render single lines of the final image.
Data is passed back from the rendering clients to their
respective slave server, which eventually returns it in
a batch to the master for final composition.

The primary benefit of this hierarchical
design is the resilience to failure of not only the
clients, but the servers as well. A single-tier master-
slave system could potentially handle the failure of the
server, but the flood of clients connecting to a new
server could result in a variety of problems including
excessive recovery time, connection timeouts and
excessive network overhead. In our system, a failure

affects only a small subset of the machines involved in
the system. The slave servers are only concerned with
their connection to the master and the active clients
are only concerned with their connection to a single
slave server. As a result, there is a substantial
reduction in potential recovery time and less chance of
further disconnections in the event of a failure.

Figure 1 - Network Topology

The system will only fail if the master and

next of kin simultaneously fail. Given the probability
of the master server failing, PM, and the probability of
the next of kin failing, PNK, the probability of the
system failing is represented by the variable PF, where
PF = 1 – PM * PNK.

This design allows us to distribute not only

the actual rendering of the final image, but also the
management of clients. Our system can handle a large
number of rendering clients, where a traditional
single-tier master-slave system could fail as the single
server is overwhelmed by connection management
overhead. In our system, the relationship between the
master server and slave servers very closely parallels
the relationship between the slave server and its
clients. These relationships are nearly identical, except
that each is operating at a different level of granularity
on the final image to be rendered.

3.1 Master Server

The master server has five primary tasks:
GUI rendering and image composition, scene
management, rough distribution of lines to render,
initial client connection handling, and assignment of a
next-of-kin.

Rendering of the graphical user interface

consists of drawing a window containing all the
currently rendered lines. The master is the only
process that draws the scene to the screen, and only
the master and the next-of-kin server have a copy of
this rendered image data. This allows for sufficient
redundancy in the event of a master server failure,
without excess network overhead resulting from
sharing the image data with every process in the
group.

The scene data for the raytracer is a
collection of objects that describe geometric figures
with varying locations, sizes and other properties in
the scene to be rendered. The master server is
responsible for sharing the scene data with all slave
servers, which later pass it along to their respective
clients.

The master server is also responsible for
partitioning the image into portions to be sent to each
slave server. We chose the finest granularity of image
distribution to be lines, and the batches sent to each
slave server to be groups of lines. The master keeps
track of this distribution, and ensures that all lines are
eventually rendered. If any slave server fails, the batch
of lines assigned to the lost server is not rendered, and
will be properly reassigned when all other lines have
finished.

A client connecting to the raytracer initially

connects to a master server, and is either assigned to
be a slave server or is redirected to an existing slave
server for rendering. The master manages the
spawning of new slave servers and the distribution of
clients among them. When a client connects to the
master, it queries for any available client spots from
slave servers. If an open spot exists, then the client is
redirected. Otherwise, the client is commanded to
become a slave server and ready itself for accepting
new client connections.

The master server selects one of the slave

servers as a next-of-kin. This next-of-kin will take
over as master if the original master fails. Whenever
the assignment of a next-of-kin takes place, all other
slave servers are notified of this assignment and are
made aware of the network address of this backup
master. This knowledge allows all slave servers to
seamlessly switch to a new master (the next-of-kin) in
the event of death of the original master server.

3.2 Slave Server

Each slave server is responsible for (i)
managing its own group of clients, (ii) distribution of
a batch of lines to be rendered, and (iii) assuming the
next-of-kin role when appropriate. Slave servers are in
charge of clients that have been redirected to them by
the master. If a client fails, the slave server handles the
failure by ensuring that the line assigned to the lost
client is properly reassigned to an active client, and
then continues rendering the batch of lines as normal.

Upon first connecting to a slave server,

clients receive scene data if they do not already have
it. They are then continually assigned single lines for
rendering. When the rendering of a group of lines has
completed, the slave server sends a block of image
data back to the master server, which is later displayed
on the master server’s screen. If a slave server has
been assigned as next-of-kin, it shares all the currently
rendered image data with the original master. If the
original master fails, then the next-of-kin server

immediately becomes master and beings accepting
connections.

3.3 Client

The client contains an instance of the engine
that performs raytracing computations and renders a
single line of the given scene at a time. The features of
the raytracer engine used in the clients include various
types of texturing on objects, reflection, refraction,
Boolean operations between objects, and anti-aliasing.
The recursive ray construction and intersection
algorithms used to render the scene are well-known
and the specifics of the design of the engine are out of
the scope of this paper [6].

4 IMPLEMENTATION

Execution of the raytracer is begun by
initializing the master server and starting several client
processes. Initially there are no slave server processes,
and the master server determines the number of slave
servers to instantiate. The master delegates the slave
server role to the first connecting client; therefore
clients must be able to become a slave server.
Additionally, slave servers must be able to assume the
role of master server if the master fails. All processes
are started from the Driver class, which allows clients
to assume the role of slave server and slave servers to
assume the role of master server. The driver will start
a master server process if the master flag is specified.
If the client flag is specified, then a client process is
instantiated and connects to the given host.

4.1 Master

When the master process is started, it

immediately constructs a server socket running on a
predetermined port. To simplify the recovery process,
a fixed port number is used. In the event of a master
failure, a slave server assumes that the next-of-kin will
become the master and open a socket to the
predetermined port. All processes initially connect to
the master server and are assigned to their respective
roles in the raytracer topology. A client is assigned a
slave server role if all connected servers are full,
which occurs when a predefined number of clients are
connected to each slave server. Initially the project
had intended to adjust this value dynamically to allow
for scalability. However, experimental results
concluded that a static value of 10 produces the best
performance.

The master server must be able to accept

client and slave server connections. A client connects
to the master to establish the initial connection and
disconnects from the master once it is assigned to a
slave server or told to become a slave server. A client
also connects to the master if the client’s server fails
or the server redirects the client. When a client
connects, the master is responsible for assigning the
client to a slave server. The master iterates through the
server list and queries each slave server for a client

opening. If a slave server response specifies an
opening, then the client is redirected to the slave
server. If no slave servers have openings, then the
client is assigned to become a server. The master
server does not maintain an internal list of clients for
each server, because clients can be dropped from the
topology without notifying the master.

A slave server connects to the master server

to establish the initial connection and is not
disconnected until rendering has completed. A server
may also become disconnected in the event of a
failure, which results in the slave server connecting to
a new master server. When a slave server connects,
the master server adds the server to the list of known
servers and spawns a new thread to manage socket
communication. If this is the first connecting slave
server, then it is assigned the role of next-of-kin.
Additionally, the next-of-kin is sent a copy of the
rendered image data. This redundancy allows the next-
of-kin to continue rendering with minimal data loss in
the event of a master server failure.

After connecting, the slave server sends a

message to the master specifying if the slave server
has the scene data. A slave server will already have
the scene data if it was started as a client process and
later redirected to a slave server role. The master
responds with the host name of the next-of-kin and the
scene data if requested. The server is sent batches of
lines to render until rendering has completed. When
the server finishes a batch of lines, it responds with
the rendered image data. This data is forwarded from
the master to the next-of-kin to allow for redundancy.
When rendering completes, the master sends the slave
server a message specifying there are no further lines
to render. The slave server forwards the message to all
of its clients then terminates.

In addition to creating the network topology,

the master server is responsible for assigning batches
of lines to render and synchronizing the rendered
image data. The master server only keeps an index
into the image and a list of the completed lines,
therefore the master server does not know which lines
are currently being rendered. Each time a batch of
lines is requested, the master server starts from the
current index. The master server adds uncompleted
lines to the batch until the batch is full, or all lines
have been considered. The method allows the master
to delegate batches of lines to render while
maintaining minimal data structures. It also results in
multiple servers assigned the same line to render, but
this condition only occurs while rendering the final
batch of lines.

4.2 Slave Server

After connecting to the master server, a slave
server constructs a server socket running on a free
port. The server socket only accepts client
connections. When a client connects, the slave server
checks for an open client slot. If the slave server is

currently full, then the client is redirected to the
master server. Otherwise the client is added to the list
of clients and a thread is spawned for socket
communication with the client. The next-of-kin slave
server is implemented identically to every other slave
server, except it has the knowledge of its status as
next-of-kin.

4.3 Client

The client process connects to either the
master or any slaver server, and can disconnect and
redirect to an aribitrary network address if a slave
server sends such a message when transferring the
client to the master. Upon assignment to a slave server
rendering slot, the client receives and stores a copy of
the scene data, and the network addresses of the
master and slave servers. The client then repeatedly
receives a line number and returns a batch of pixel
colors. By combining each single line number with the
given image size stored in the scene data, the client is
able to compute the correct number and location of
rays to cast into the scene. The raytracer render is
implemented with standard recursive raycasting
methods described in other literature [6].

4.3 Fault Tolerance

Recovery from client failures is the simplest
case, because there is at most one process
communicating with the client. The client is in one of
three possible states during a failure: connected to the
master, connected to a slave server, or redirecting. No
slave server or master server error handling is
necessary if a client fails while in the redirecting state,
because there are no open sockets to the client. If a
client failure occurs while connected to the master
server, the master server catches the socket exception
and attempts to close the socket. If a client fails while
connected to a slave server, the slave server catches
the socket exception, attempts to close the socket,
removes the client from the list of clients, and
reassigns the line being rendered by the client. After a
failure, a client will attempt to reconnect to the master
and the next-of-kin. If both of these attempts fail, then
the client will terminate.

Handling a slave server failure is more

complicated than a client failure, because many clients
may be connected to the slave server during the
failure. When a slave server fails, the master server
will catch the socket exception and remove the slave
server from the list of servers. Additionally, each of
the slave server’s clients will catch a socket exception
and redirect to the master server. The master server
will assign one of the clients the slave server role if
there are not enough client slots. The remaining slave
servers are unaffected by the failure, because they
have no knowledge of the server. If a server assigned
next-of-kin fails, then the master server must perform
additional error handling. The master server picks the
next slave server in the list of servers as the next-of-
kin and informs the remaining slave servers. If there

are no remaining servers, then the next slave server to
connect is assigned the role of next-of-kin.

If a master server failure occurs, the topology

of the network must be reconstructed. When a master
server fails, the next-of-kin disconnects from its
clients and assumes the role of master server. The
remaining slave servers will detect the failure and
attempt to connect to the new master server. Multiple
attempts may be necessary, because the server may
detect the failure before the next-of-kin assumes the
role of master server. Experimnets demonstrated that
five connection attempts were adequate for our tests.
The disconnected clients will attempt to reconnect to
the previous master server and then attempt to connect
to the new master server. The clients connected to the
remaining slave servers will be unaffected by the
failure and will keep rendering while the slave server
is connecting to the new master server. This
implementation allows the raytracer to continue
rendering during the error recovery phase.

5 RESULTS

 The complex scene object used for this
performing testing makes use of all of the features of
the rendering algorithm implementation, described in
section 3.3. The final rendered image, as shown in
Figure 2, involves varying regions of calculation
complexity, consisting of a jack-o’-lantern, a
refractive lens, a mirror and multiple light sources.
The tesing environment consisted of 50 Pentium 4 2.3
Ghz machines with one gigabyte of RAM on a gigabit
network.

Figure 2 - Final Rendered Image

 The first experiment analyzed the scalability
of the raytracer. Four different client configurations
were tested and the results are displayed in Figure 3.
The raytracer was run with five clients per server and
a batch size of 30. The graph displays a near linear
speedup between the number of clients and run time.
However, the increase in performance per additional
client decreases after 30 clients. The raytracer should

be able to scale to about 100 clients, adding additional
clients would increase run time due to network
overhead. The additional of new clients also affects
the time required to construct the network topology.

 The approximate number of messages sent
while rendering a 1000 by 1000 pixel image is
displayed in Figure 4. The number of messages was
calculated as double the sum of the total number of
messages sent by the master server and the number of
messages sent by each slave server to each client.
This function was used to approximate total messages,
because the servers communicate with the master
server in a master-slave pattern and the clients
communicate with the server in a master-server
pattern. A non-linear relationship between clients and
total messages resulted, due to the three-layer design.

0

500

1000

1500

2000

2500

3000

1 5 10 30

Number of Clients

Ti
m

e
to

 R
en

de
r (

se
co

nd
s)

Figure 3 - Performance vs. Number of Clients

The results for an experiment with varying
numbers of clients per server and a batch size of 30
lines are shown in Figure 5. A ratio of 10 clients per
server produced the best results for the three-layer
design. The experiment with 20 clients resulted in the
worst performance, because the number of clients was
not a factor of the number of lines in a batch. This
slowdown occurs, because some clients are idle while
waiting for the next batch of lines from their
respective servers.

0

500

1000

1500

2000

2500

3000

3500

1 5 10 30

Number of Clients

N
um

be
r o

f M
es

sa
ge

s

Figure 4 – Message Traffic vs. Number of Clients

The fault tolerance of the system was tested
by initially starting 19 processes, shutting down all
except one of the processes, and restarting 6 more

processes. A ratio of five clients per server was used;
therefore the initial topology was a single master
server, three slave servers, and fifteen client processes.
Random processes were closed until a single machine
remained, which assumed the role of master server.
There was a minimum of fifteen seconds between
each server failure. Clients were disconnected alone or
in groups of two. The remaining process successfully
assumed the role of master server and continued
rendering from the previous master’s last image
update. Six additional processes were instantiated,
which formed a topology with a single master server,
a single slave server, and five client processes. The
raytracer successfully passed all fault tolerance tests.

0

50

100

150

200

250

300

20 10 7 5

Clients per Server
Ti

m
e

to
 R

en
de

r (
se

co
nd

s)

Figure 5 - Performance vs. Number of Clients/Server

6 CONCLUSIONS

 The results of our work show that our
hierarchical master-slave design is not only a feasible
pattern for implementation, but effective in
maintaining speed increases across large numbers of
clients, limiting excess network congestion, and
maintaining fault tolerance in the presence of many
types of process failures. The tiered design distributes
not only the individual task of rendering the scene, but
also the management of this distribution. Since this
client management is separated among each slave
server, no single machine is overwhelmed by requests,
and the total network overhead involved in a rendering
operation is reduced. Finally, the multi-level design
allows for an application-level approach to effective
fault tolerance that is able to contain the occurrence of
failures to a specific portion of the hierarchy and can
therefore withstand any number of simultaneous client
failures and any type of non-concurrent server failure.

 We achieved a near linear increase in
performance in our tests, demonstrating that the
overhead involved with the fault tolerance and work
distribution was minimal in comparison to the
increase in overall rendering speed. Even with this
initial implementation, we observe that the
approximate ideal number of rendering clients in our
particular system approaches 50 to 100, which would
likely improve with optimization of the code, batch
size, and server-to-client ratio. Our tests also revealed

that a single-tier design, as simulated in our 20 clients
per server test run, is markedly slower than our three-
tier design in total rendering speed. Our initial
assumption about the benefit of this design over the
simpler arrangement of single server and multiple
clients is therefore strongly supported. It can be
predicted, from this data, that as a system like this
grows larger and larger, it reaches a point where the
addition of a new tier of data management would
greatly benefit the overall efficiency of rendering
progress. However, a dynamically tiered system is left
as potential future work, as described in the following
section.

 Overall, the design and its implementation
were a success, and we achieved the increase in
performance and resilience to failure that we expected
during the onset of the project. Raytracing provides an
ideal problem in the field of distributed computing,
and demonstrates that a tiered design with failsafe
mechanisms is an essential part of dealing with the
massive numbers of clients and scene complexity
associated with raytracing.

7 FUTURE WORK

This parallel raytracer focused on
implementing a modified master-slave design that
could scale to handle a large number of clients and
withstand any type of non-concurrent server failure or
simultaneous client failure in the system. Now that
this pattern has been determined to be feasible and
beneficial in the context of a parallel raytracer, there is
much room for improvement in the areas of scene
distribution, load balancing, and simultaneous server
failure handling. If used in a professional setting, such
as a visual effects studio, the scene data used by a
raytracer can grow to be very large in size. Because
this data must be spread among many servers and
clients, it would be useful to implement a type of
scene partitioning to spatially separate various objects
in the scene and send only the parts needed by the
server or clients. Server and clients could then request
scene data on the fly and cache it as needed.

Load balancing also plays an important part

in parallel raytracing. Due to the fact that certain rays
in a scene may involve relatively more complex
calculations, it is useful to be able to take this complex
section of image data and dynamically split it up
among more clients than what is assigned by default.
The current implementation of our raytracer performs
very coarse, static load balancing, basing its image
separation on lines which contain many pixels, each of
which is assumed to require a similar amount of
computation time. While this granularity of image
division, in most cases, results in an even separation
of work, there may be cases when particularly
complex portions of a single line demand a finer
granularity.

An obvious problem in our architecture is

that it cannot handle multiple, simultaneous server

failures. While the design can withstand an unlimited
number of simultaneous client failures, it cannot
handle simultaneous loss of both the master and the
next-of-kin servers. Future work to alleviate this
weakness could involve the implemention of a
multicast messaging protocol for leader election of a
new master when this type of failure occurs.

The number of tiers in the system could vary
as the size of the total workload increases, reducing
the workload on the master server. Adaptive master-
slave work scheduling systems have been studied
extensively in previous work [4, 8]. Dynamic
topology would effectively reduce the branching
factor of connections in the system. However, the
complexity of this arrangement may create a larger
opportunity for failures to occur in the midst of
network rearrangement, and therefore present a
challenge in maintaining the current level of fault
tolerance.

8 REFERENCES

[1] K. Aida and W. Natsume and Y. Futakata,
“Distributed computing with hierarchical master-
worker paradigm for parallel branch and bound
algorithm,” 3rd International Symposium on Cluster
Computing and the Gird, pp. 156-163, 2003.

 [2] W. E. Biles and C. M. Daniels and T. J.
O'Donnell, “Statistical considerations in simulation on
a network of microcomputers,” Proc. of the 17th
conference on Winter Simulation, pp. 388-393, 1985.

[3] B. Freisleben, D. Hartmann and T. Kielmann,
“Parallel raytracing: a case study on partitioning and
scheduling on workstation clusters,” Proc. of the
Thirtieth Hawaii International Conference on System
Sciences, vol. 1, pp. 596-605, 1997.

[4] T. Kindberg, A. Sahiner and Y. Paker,
“Adaptive Parallelism under Equus,” Proceedings of
the 2nd International Workshop on configurable
Distributed Systems, pp. 172-182, 1994.

[5] P. Pitot, “The Voxar project (parallel ray-
tracing)”, IEEE Computer Graphics and Applications,
vol. 13 n. 1, pp. 27-33, 1993.

[6] C. Pokorney, Computer Graphics: An Object
Oriented Approach To The Art And Science, Franklin
Beedle & Associates, 1994.

[7] D. Schmidt, M. Stal, H. Rohnert and F.
Buschmann, Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, John
Wiley & Sons, 2000.

[8] G. Shao, Adaptive Scheduling of
Master/Worker Applications on Distributed
Computational Resources, PhD thesis, University of
California at San Diego, 2001.

