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Abstract 

 
Interactive Thin Shells – An Interface for the Analysis of Physically Based 

Animation 
James Ross Skorupski 

 
With the advent of real-time physically based animation over the past decade, and 

more recently, the growth of general mathematical computing on graphics processors, 
there has been an increasing interest in the development of realism in computer graphics. 
However, the algorithms involved in mimicking the physical world are often very 
complex, abstract, and out of reach for an average computer science student or 
practitioner. This work introduces an interface to a physically based algorithm, a thin 
shell animation, which focuses on visualization, experimentation, and control. Through 
the use of dynamic coloring, abstract visual cues, robust user interaction, and full control 
over the algorithm parameters, our system facilitates the process of discovery and 
experimentation, which can enhance the learning experience and help overcome the 
difficulties in understanding the mathematically intense concepts that comprise the core 
of many physically based models. Furthermore, our interface design can be used as 
model for interacting with other types of physically based animations and provide the 
same benefits for learning.   
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1 Problem Description and Motivation 

One of the many current driving goals in the field of computer graphics is to artificially 

replicate reality by mimicking the appearance of natural objects and phenomena. While 

the ultimate purpose of the resulting imagery may vary widely from entertainment to 

scientific endeavor, the underlying algorithms that produce the imagery of interest are, 

more often than not, based on our basic scientific understanding of the world around us, 

and therefore mathematically intensive. These algorithms and their associated techniques, 

which often deal with real world phenomena such as fluid dynamics, rigid body 

dynamics, and the transport of light, are grouped into a subset of computer graphics 

known as physically based modeling [1]. The complexity of these algorithms is often 

proportional to the desired amount of realism and the level of mathematical knowledge 

and experience required to understand and successfully implement these algorithms can 

often exceed the capabilities of a typical computer science practitioner. Furthermore, 

these programs ultimately can only discretely approximate the continuous nature of 

reality, and are therefore guaranteed to introduce some level of error which must be 

understood and dealt with appropriately.  

 

While traditionally, modeling the physics of reality has been delegated to large clusters of 

servers computing over the course of hours or days, the rapid advancement in processing 

power and memory storage sizes over the past decade has allowed for relatively complex 

physically based algorithms to perform at interactive frame rates [1], [2]. In addition, the 

market for home computer and entertainment console gaming has increased dramatically, 
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and the quest for realism in computer graphics in general has been hastened by the quest 

for realism in interactive entertainment. Modern graphics cards manufacturers, similarly 

driven by the home entertainment market, are beginning to encourage the development of 

general purpose mathematical computing algorithms specifically designed for the highly 

parallel stream architecture of graphics processing units, while other hardware vendors 

are developing dedicated solutions that attempt to accelerate the mathematical operations 

common in physically based modeling [19], [25]. Together, these technological and 

financial motivations to develop more realistic computer imagery will inevitably further 

the interest in physically based modeling, and encourage computer scientists to explore 

the concepts associated with the field.  

 

As technology advances and more complex physically based algorithms continue to 

develop and become a feasible avenue for generating computer imagery, the 

understanding of these algorithms and their underlying concepts will become a greater 

challenge. In addition, as the demand for realism in the virtual world spreads across all 

areas of the real world, computer scientists wishing to design physically based algorithms 

will encounter an increasingly varied amount of scientific theory, ranging from 

thermodynamics to astrophysics. To make matters worse, previous research has shown 

that many modern computer science students encounter a small selection of math courses 

in their curriculum, and therefore tend to exhibit weak mathematical problem solving 

skills [3], [12], [6]. It is also safe to assume that many modern computer scientists, who 

are recent university graduates, may be similarly lacking in mathematical background 

required to understand many of concepts in physically based models. 
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The problem therefore presents itself: How can computer scientists, students and 

practitioners alike, better understand the workings of math-intensive computer graphics 

algorithms without an extensive math background?  Our solution cannot eliminate the 

need for traditional study in the requisite mathematical topics. It does, however, present a 

tool to augment the learning process, and provide a more interactive and visual 

experience for a person wishing to understand the behaviors of these complex algorithms.  

1.1 Contribution 

This work introduces an interface to a physically based algorithm that focuses on 

visualization, experimentation, and control, and encourages the exploration, discovery, 

and understanding of the algorithm as a whole. Through the use of dynamic coloring, 

abstract visual cues, mouse interaction, and full control over the algorithm parameters, 

our system facilitates the process of experimentation, which can enhance the learning 

experience and help overcome the difficulties in understanding the mathematically 

intense concepts that underlie our specific algorithm. Furthermore, our interface design 

can be used as model for interfacing with similar algorithms and provide the same 

benefits for learning.  Our system’s target audience includes computer science students 

and computer science practitioners with a desire to understand the complex workings of a 

physically based algorithm and augment their learning experience with direct, visual 

interaction. 

 

Our interface is specifically designed for interacting with algorithms in a subset of 

physically based modeling, called physically based animation. This sub-field deals with 
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the physical dynamics of mass, ranging from fluids to cloth, and involves the calculation 

of internal and external energies that influence the resulting physical movement of the 

system. Physically based animation algorithms facilitate a more natural graphical 

interface, because they mimic physical motion which can be observed and often 

confirmed in the real world.  Other physically based modeling algorithms, such as those 

that deal with thermodynamics or lighting models, may not lend themselves well to our 

specific interface, but the general design concepts behind our system may provide a 

guideline for future work which involves interaction with those types of algorithms.  

 

The program we created to demonstrate our interface is called Interactive Thin Shells 

(ITS).  The underlying physically based algorithm simulates the dynamics of thin shells, 

which are flexible structures that have a high ratio of width to thickness and have an 

initial three dimensional non-flat shape that affects its energetic reaction to change from 

that initial shape [9]. Our implementation of the physical system is based on a simplified 

constraint model based partially off of previous work of in the area of thin shells [9] and 

mass-spring cloth simulation [4]. We also implemented both an implicit and explicit 

integration scheme developed by additional work in the area of cloth dynamics [15], [16], 

[20]. The ITS environment allows us to directly demonstrate how our interface can be 

used to investigate the properties of an algorithm and interact with it in an intuitive and 

reasonable manner. In addition, the freeform interactive design of our interface, as is 

described in Sections 3 and 4, serves to reveal a weakness in our thin shell algorithm and 

discrete approximations of continuous material properties as a whole.  
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2 Related Work 

The Interactive Thin Shells environment aims to provide a highly customizable and 

intuitive interactive interface to a physically based animation algorithm. It sets itself apart 

as a tool for those not intimately involved in the implementation details of the underlying 

physical simulation, and therefore must focus on allowing the user to explore and 

discover the capabilities of the underlying algorithm. Because the ITS environment itself 

involves both the implementation of a physical model of thin shells and its unique 

interface to that same model, it is based on previous work in the areas of physically based 

animation, cloth simulation, and visual interactive simulation tools.  

 

The thin shell algorithm implementation in ITS is based on a standard physically based 

animation model, described in detail in the work of Baraff and Witkin [1]. The ITS 

environment involves the persistent storage of a series of states of the system, 

advancement of the states using the forces of a chosen dynamics model, thin shells with 

masses at each vertex in this case, and numerical integration of this progression which 

results in movement in the simulation environment. More specifically, the underlying 

model implementation is equivalent to a cloth animation model with some modifications 

that support non-planar initial configurations and the stiffer internal forces of thin shell 

materials.  

 

The ITS system also employs implicit integration to progress the simulation, as described 

Baraff and Witkin in their earlier development of stable, stiff cloth [2]. The backward 
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Euler step integration scheme is utilized for implicit integration, and the traditional 

forward Euler step method is used for our explicit integration mode [1]. While it is a 

more complicated scheme for calculating the next state of the thin shells model, which 

requires the solving of a large linear system at each step of the simulation, the implicit 

method provides for numerical stability that is critical in this particular situation [1]. Our 

particular implementation of the implicit method is based on the work of Dean Marci of 

the Intel Corporation [15]. Thin shell materials typically exhibit very little deformation 

within the surface of the material itself, and therefore require high resistance to these 

local changes in length in area. Because of this, our simulation will experience regions of 

high energy in response to deformation, where implicit differentiation allows for 

reasonably sized time steps [1].  

 

Thin shells, as mentioned in Section 1.1, are flexible materials that are extremely thin in 

one dimension and have a predetermined relaxed non-flat configuration [9]. They 

typically are very resistant to in-plane deformation, in the form of stretching or shearing, 

and allow a limited amount of out-of-plane bending from the original shape. Thin shell 

materials differ themselves from cloth, which is typically modeled with an initial flat 

configuration and weaker membrane and bending energies. The membrane, or in-plane 

forces in our algorithm are based on the length of edges between vertices, which is 

similar to the work of Baraff and Witkin, and the bending force is a simplified form of 

the piecewise geometric bending energy in the discrete shells work of Grinspun et al [2], 

[9]. This bending force simplification, which is based on a simple linear constraint across 

two triangles, is similar to the bending forces of traditional mass-spring particle-based 
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cloth models, based on the internal structure of many real-world textiles [4]. In addition, 

the collision and user interaction methods in our simulation are also based on the cloth 

animation work of Baraff and Witkin [1], [2], which provides a derivation of forces based 

on arbitrary constraints, as well as direct control of material motion based on 

manipulation of the mass matrix for the entire simulation. 

 

The user interface of the ITS environment takes the attributes of the underlying 

physically based animation model and provides a simple, intuitive interface that is aimed 

not at a programmer debugging code, but designed for an individual who wishes to 

understand the capabilities and theoretical components of the model.  Similarly, Burgoon 

[5] demonstrated an interface to a thin shell simulation based on origami folding and the 

discrete shells model of Grinspun et al [9].  The system provided simple user interaction 

for folding the thin shell, virtual paper in this case, into a new default configuration. 

Unlike ITS, the purpose of this work, however, was the artistic manipulation of the 

material, and not the analysis of the inner workings of the algorithm that drove the 

animation. In general, there is little previous research that addresses an interface design to 

physically based animation, however, the field of computer-based realistic simulation 

provides another source of research.  

 

The general capabilities of the ITS environment are based on the work of Michael Rooks 

[21], who defines a set of requirements for general visual interactive simulation (VIS) 

software systems. VIS systems, as defined by Rooks, simulate real world physical 

phenomena as accurately and completely as possible, in contrast to the physically based 
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animation methods such as our implementation of thin shells, which aim to achieve 

convincing visual realism without a requirement for accuracy. Despite this fundamental 

difference in philosophies, the goals of tools for VIS systems remain accurate for the ITS 

environment which is similarly based on experimentation. Rook describes a complete 

VIS system as one that facilities (1) Intervention, (2) Inspection, (3) Specification, and 

(4) Visualization, and explains each of these features throughout the paper [21]. The ITS 

environment satisfies each of these requirements by providing direct control of the 

meshes involved and procession of time (Intervention), access to and customization of all 

relevant material and simulation attributes (Inspection and Specification), and visual 

feedback of the resulting simulation and its effect on the dynamics of the thin shell model 

(Visualization).  The specific details of these requirements and their relation to the design 

and implementation of the ITS environment are described in Section 3, and the final 

correlation between the proposed guidelines and the abilities of our system are examined 

in Section 6.   

 

The work of Rooks also describes the concept of representative or abstract displays of a 

VIS [21]. The former is a visualization that is a simplification of a simulations actual 

appearance, while the latter is an alternate view of a simulation that may bear no 

resemblance to its actual appearance, but provides a more comprehensible view of data. 

In the ITS environment, there is no representative display, because the resulting 

animation of a thin shell is the complete description of the system that is modeled.  

However, abstract displays play an important part in visualizing various local or global 

attributes of the thin shells model in action, in the form of arbitrary vertex coloring, 
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dynamic color ranges, and various other visual augmentations of the animation. The 

specific featured abstract displays of data in the thin shells model will be discussed 

alongside the design and implementation of this system in Sections 3.3 and 4.3, 

respectively. The ITS environment therefore combines the techniques of pure simulation 

tools with an approximate animation model so that a curious student or computer science 

practitioner is able to discover all aspects of the thin shell model, including its efficiency, 

capabilities, limitations, and resulting level of visual realism.  
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3 Solution Overview 

The ITS solution fulfills the requirements of Rooks [21] for a generalized visual 

interactive simulation (VIS), by providing Intervention, Inspection, Specification, and 

Visualization of the underlying simulation. The following section is an overview of the 

capabilities of the thin shell simulation, the user interface, and the visualization modes 

available in ITS.  

3.1 Animation 

As described in the related work section of this paper, the physically based animation that 

runs within the ITS interface is a thin shell model with masses at each vertex, using 

membrane and simplified bend forces derived from previous sources [2], [9], and 

employs both explicit and implicit integration to progress the animation. The details of 

the integration and forces are described in detail in Section 3.1. In order to facilitate the 

experimental capabilities of the ITS interface, the underlying simulation supports the 

enforcement of collisions and constraints for the user Intervention requirement, 

alternating modes of integration, arbitrary mesh file loading, virtual world boundaries, 

and direct modification of thin shell and simulation parameters to allow for the 

Specification requirement of a VIS. The system supports constraints on vertices, which 

disable up to three degrees of translational freedom, which is used by the ITS interface to 

allow the user to pin vertices in arbitrary locations. In addition, to introduce a varied 

environment for the thin shell interactions, there is also support for collisions with 

between the thin shell and sphere or cube environment objects in the virtual world. The 

thin shell algorithm also is able to switch between explicit and implicit integration modes 
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without any errors in the simulation as a result of the transition. In order for ITS to allow 

for a large number of varying thin shell shapes, the simulation is able to load arbitrary 

mesh files that are formatted in Hugue Hoppe’s ‘.m’ format [10]. To ensure that the thin 

shell objects are not lost in the virtual world, the simulation also enforces boundary 

constraints at predefined extents along the X, Y, and Z axes. These automatically prevent 

any mesh from moving beyond a specific region in the simulation.  

 

The final and most important feature of the simulation is its dynamic material and global 

parameters. The ITS interface is able to access the data inside the simulation and modify 

any of the thin shell membrane or bend parameters, as well as the time step size, gravity 

force, integration mode, and environmental collision objects. This modification does not 

adversely affect the progress of the simulation, and therefore ensures that users are given 

the most flexible interaction experience possible, to experiment with many simultaneous 

parameters and observe the resulting effects without interruption.  

3.2 User Interaction 

User interaction capabilities of the ITS environment are the only window a user has to 

intervene in the underlying physically based algorithm. Because of this, we ensured that 

the interface is simple, clean, and flexible. The user has the ability to start and stop the 

simulation at will, rotate and translate the camera view, and interact directly with the 

materials onscreen. When the simulation is active, clicking and dragging on a vertex 

point initiates a spring force from the mouse location to the vertex of interest, resulting in 

smooth interaction with the active algorithm. If the user selects a vertex when the 

animation is paused, he or she may choose to pin or unpin the vertex, which creates or 
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removes a constraint on that vertex in the underlying physical system. The ITS interface 

also supports simultaneous experiments. This allows the user to load a single mesh, and 

generate multiple instances of this mesh with different individual algorithm parameters 

and shared global parameters. Simultaneous meshes allow the user to perform a 

comparative analysis of the effects of varying algorithm parameters in an otherwise 

identical environment. In our specific case of thin shells, the user can vary the behavior 

of different version of the mesh to behave like rigid plastic, elastic cloth, or somewhere in 

between. When more than one experiment is loaded, the user interaction between all 

experiments is linked. This can occur because every experiment has the same thin shell 

mesh loaded, and a selection of a specific vertex in one experiment can be directly 

corresponded to a vertex in every other experiment on the screen. As a result, clicking 

and dragging a point in one experiment upward causes the same upward force on the 

same vertex in every other experiment that is active.  

 

In addition to interacting with individual vertices, the user is also able to modify any thin 

shell material parameter, or any one of the many global parameters, such as gravity 

strength, time step size, and location or existence of environment collision objects. These 

modifications can occur at any time during the simulation, ensuring complete interface 

flexibility and total experimental freedom.  

3.3 Visualization 

The ITS environment provides two alternative ways to view the simulation. The user may 

choose to view an abstract, multi-colored representation of the mesh, with varying colors 

corresponding to force values acting on each of the vertices in the algorithm, and the user 
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may also choose to view previous states of the animation, stored in memory. These 

features may also be used simultaneously, to view forces acting at a previously recorded 

moment in time.    

3.3.1 Dynamic Histogram 

In the ITS environment, it is important that the user be able to see the various forces 

acting on the vertices in the simulation, so that he or she may explore the effects of 

various types of interactions on the animation. Because of this, the user may choose to 

view the force values for the membrane, bend, or total forces for each vertex within the 

system. When any of these views are chosen, each vertex is colored according to the 

location it fits on a histogram, as pictured in Figure 1. This mapping from the large range 

of possible force values to a series of discrete colors associated with ranges of these 

values ensures that resulting coloring model exhibits sufficient variations among possible 

force colors that are large enough to be perceived by the human eye of an ITS user. This 

is important for analyzing the algorithm at hand and determining areas of interest and 

performing comparative analysis of different experimental conditions.  

 

The difference between a traditional histogram and the one in the ITS environment is its 

dynamic range and force-to-color mapping capabilities, which are accomplished through 

compression and equalization algorithms, respectively. Compression shifts the upper and 

lower ranges of the histogram in order to attempt to equalize the number of values in each 

histogram segment, while preserving the equal range increments from one segment to the 

next. Equalization, on the other hand, performs a non-linear transformation on the 

underlying force data points in order to spread it across the histogram equally, which 
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does not preserve the equal range size of segments and therefore relative color 

comparisons are not reliable [8]. The compression algorithm cannot always choose ideal 

range values to evenly spread the force values, due to the discrete nature of the 

histogram, but equalization forces this to occur through a numerical transformation on the 

original force data, at the expense of uniform relative histogram segment sizes. 

Therefore, the compression algorithm is useful when relative comparisons between force 

values must be made, and equalization is useful in discovering areas of small force 

variation that do not show up on a fixed-size segment histogram. More details on the 

implementation of these histogram algorithms are in Sections 4.3.1 and 4.3.2 of this 

paper.  

 

When requested by the ITS user, the compression and equalization algorithms can 

analyze a single frame of force values or all frames and therefore all force values that 

have been recorded and are in the simulation cache, which is described later. The analysis 

of all past and present frame data results in a histogram that is optimized for an entire run 

of a simulation, and has the ability to show, on average, an adequate distribution of color 

for any given frame in the animation. In order to analyze all frames of force data, the 

simulation cache is accessed when necessary to gain access to previously stored state 

information.  
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Figure 1 - A force value histogram, with corresponding hue value mappings 

 

3.3.2 Animation Cache 

The ITS application stores a buffer of previous simulation data in a cache so that the user 

may navigate to a previous time step and analyze the state of the animation. The force 

coloring option may also be enabled when viewing the cache, so that previous force 

values can be observed and analyzed. The buffer keeps track of the locations of all 

vertices in the animation, as well as the total, membrane, and bend force vectors for each 

of those vertices. In addition, the material parameter settings for each experiment at every 

frame are stored in this cache, as well the time step and gravity acceleration global 

settings. In this way, the user is able to see the exact progression of the animation and 

determine the cause of various behaviors or manipulations in the environment. With 

Force Magnitude Range Segments from Min. Force to Max Force 

Values <= Min. Force Value Values >= Max. Force Value 

Increasing Color Hue Value  
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access to a history of all the data that is available at the original animation runtime, useful 

experiments can performed and then reanalyzed repeatedly to make useful conclusions.  
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4 Implementation  

This section describes the specific implementation of features the ITS environment. 

Sections 4.1 through 4.3 describe, in detail, the important or unique capabilities of our 

software, which directly influence the capability of the system to fulfill the requirements 

outlined in Section 2. A more complete full feature list, which outlines all major and 

minor capabilities in the ITS system, is available in Section 4.4. In all mathematical 

equations in this section, bolded letters signify matrix or vector variables. 

4.1 Animation 

The integration code of the ITS physically based animation is based on the 

implementation of Baraff and Witkin’s implicit cloth simulation by Dean Marci of the 

Intel Corporation [15]. It has been modified to support a new bending force described in 

this section, stiffer membrane force constants to replicate the behavior of thin shells, 

more complex object intersections, and adaptive integration time steps.  

4.1.1 Implicit and Explicit Integration 

The implicit and explicit integration methods that are implemented in the ITS application 

are extensively discussed in many previous papers [1], [2]. The equations in Figure 2 

govern the progression of our animation. The explicit forward Euler method involves the 

straightforward computation of new accelerations and velocities by applying the force to 

the inverted masses of all vertices in the animation, and scaling these by the current time 

step, h. This method often results in a diverging system due to the extremely small step 

sizes required when strong forces exist [1]. On the other hand, the implicit backward 
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Euler method involves computing the movement of the system by solving for the change 

in position at a future point in time, based on the expected future forces, which must be 

approximated by a linear expansion of the current forces. This method allows for much 

larger time steps, handles stiff constraints effectively, and ensures that the current step is 

reversible in time, which prevents against numerical divergence [1]. In order to compute 

the acceleration, or ∆v, one must solve the linear system in the final equation in Figure 2.  

This is performed using the Modified Conjugant Gradient Method, which is an algorithm 

described in previous literature that is based on an existing implementation available 

publicly [2], [15]. In our implementation, the thin shells membrane forces are strong 

enough to require an explicit adaptive time step that is hundreds of times smaller than the 

time step used for the implicit method, resulting in slower animation render times, and a 

small amount of residual system instability that may occur under extreme force 

conditions in the system.  
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Figure 2 - The explicit and implicit integration schemes used in ITS 

4.1.2 Forces and Constraints 

The forces that act on the physical system in ITS are a simplified version of the forces 

that are present in the work of Grinspun et. al [9]. Typically, a thin shell or cloth 

animation system consists of stretch, shear, and bending forces. The stretch forces reacts 

to local changes in length (triangle edge lengths), the shear force reacts to local changes 

in area (triangle area), and the bending force reacts to a change in angle across an edge 

connecting two faces of a mesh. These forces are often derived from constraint equations 

that are zero in the initial rest configuration of cloth or thin shell materials [1]. Figure 3 

shows the constraint equation, C, used in both of the forces used in the ITS system. The 

rest lengths of all forces in our model are determined by the initial relative vertex 

positions in the loaded mesh model.  
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In our implementation, we use very stiff linear constraints between each vertex of each 

triangle, which prevent both local change in length and therefore any substantial change 

in local area in such a manner that, in our case, separate stretch and shear forces are 

unnecessary for achieving the realistic appearance of a thin shell material. As seen in 

Figure 3, the membrane forces depend on the state of the linear constraint, as well as 

user-defined membrane force constants, which are modified in the main user interface. 

The bending force in our implementation is also a simplified form of the bending force 

appearing in previous work [9]. Instead of calculating the angle change between two 

faces and applying a normal force on each vertex based on this angle, a simple linear 

constraint is attached to each pair of vertices that are on opposite sides of a pair of 

adjacent triangles. This spring-like bending constraint mimics the function of the bending 

forces found in traditional mass-spring cloth simulations based on a regular grid of 

interacting particles [4]. This solution is easier to implement, and requires less 

computation, but has a weakness that is made evident later in this paper. When two 

triangles are nearly flat relative to each other, the resistance to bending is very weak, 

because any change in the angle from this flat configuration results in very little change 

in distance between the two vertices of interest, and therefore very little change in force 

between these same two points. The original derivation of the bending energy did not 

exhibit this weakness, due to its reliance on the angle and not linear distance between 

each pair of vertices involved in the bending energy. A more technical explanation of this 

weakness appears in Figure 4. On the right side of this diagram is a side view of the 

bending force across two triangles. The equation for the change in the distance between 

two vertices with respect to the change in angle between them appears on the bottom left 
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side of this same diagram. It consists of two cosine functions that act upon the two 

smaller angles that form the total angle between the two vertices in question. When the 

total angle approaches 180 degrees, each of the smaller constituent angles approach 90 

degrees, which causes each cosine function approach zero. This means that the change in 

length of the linear constraint also approaches zero, and the bending energy at this angle 

has very little or no contribution to the total internal force at this point in the thin shell 

mesh. The original bending force derivation also includes a term which remains in the 

ITS bending force. The size of the bending force is proportional to 
eh

e
, which is the 

length of the edge between the two triangles of interest, divided by one third of the 

average of the heights of both of those triangles. The analytical source of this term and its 

relation to thin shell mechanics is examined in detail in previous literature [9]. To prevent 

infinite oscillation in our animation system, both the membrane and bending forces are 

also dampened, with corresponding user-defined dampening constants. The results of 

these combined membrane and bend forces and their effect on the final animation are 

visible in Figures 9 and 11, in Sections 5.2 and 5.3, respectively.  
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Figure 3 – The ITS Animation Membrane and Bending Forces. Membrane and bending forces have 

their own force constants and dampening constants, and the bending force additionally relies upon 

the length of the edge and heights of the triangles across which the force vector spans. 
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Figure 4 - The Linear Bending Force Weakness. As the angle between vertices A and B flattens, the 
change in distance between them approaches zero. 

 

4.1.3 Boundaries and Object Collisions 

Object constraints, their relation to the integration schemes, and their implementation are 

discussed by Baraff and Witkin [2]. When a vertex of a mesh enters the inside of a 

collision object, or moves beyond a specified virtual world boundary, it is moved to be 

just within or underneath the surface of that collision region and constrained along a 

single axis perpendicular to the surface of contact with the object. If the force 

perpendicular to the surface of contact is greater than a predefined contact force limit, 

then the constraint is released and the vertex is allowed to move freely. This prevents the 

thin shell material from entering deeply into the object of intersection, but also allows for 

sliding across the region of collision. The contact force on the vertex prevents oscillation 

of movement and constraint conditions on the surface of collision objects and boundaries, 

and the result is more realistic animation. Figure 10, in Section 5.2 demonstrates the 

visual results of these features. 
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4.1.4 Adaptive Time Steps 

While the implicit integration scheme in ITS is extremely stable and allows for larger 

time steps and stiffer constraints, it is still possible for it to experience instability in cases 

of extreme force magnitudes. Due to this potential vulnerability, and the inherent 

instability of the explicit integration method, the ITS environment supports adaptive time 

steps, which reduce in size in response to divergent behavior, or large changes in velocity 

or position. Upon each update of the positions and velocities in the ITS simulation model, 

if the change in position or velocity exceed a predefined upper bound, the changes are not 

applied, the time step is cut in half, and the iteration begins again. If the extreme position 

or velocity changes continue to occur, the time step is repeatedly reduced until it is no 

smaller than a predefined lower bound. If divergent behavior continues to occur, the 

simulation proceeds without reducing the time step, allows the errors to occur, and 

notifies the ITS interface of the problem. However, if a successful iteration occurs, the 

current time step, if it has been lowered, is increased a very small amount. This allows 

the ITS animation algorithm to adapt to the current state of the animation automatically, 

and helps to avoid significant errors in the computation.  

4.2 User Interaction 

As described in Section 4.1, the ITS environment allows the user to modify directly the 

force constants, dampening constants, gravitational acceleration, time step size, camera 

views, and environment collision object settings. The implementation of these 

interactions is straightforward matter. However, the process of allowing the user to 

interact directly with the animation using the mouse cursor is a more complicated 

procedure, since it involves modifying the vertex locations and therefore the internal 
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forces of the thin shell materials involved. The following section discusses the details of 

the methods used to allow this interaction to occur without algorithm instability and 

across all experiments running simultaneously the ITS interface.  

4.2.1 Live Interaction 

When an animation is currently playing, the user is able to use the mouse cursor to select 

and move any vertex in any experiment on the screen. Each vertex has an associated 

spherical “control point”, which can be displayed on screen at the user’s discretion. This 

control point is a sphere of a fixed radius that represents a volume of space that a vertex 

occupies. Upon the action of clicking, the ITS interface calculates the vector associated 

with the selected pixel that emanates from the camera location into the virtual world. This 

is accomplished using the gluUnProject function available in the OpenGL software 

library, which provides the geometry processing and rasterization framework for our 

system. This vector is then tested for intersection against all control points in all 

experiments and the closest intersected vertex is selected. The vector from the selected 

vertex to the camera then becomes the normal component of a plane located at the 

selected vertex location. When the user drags the mouse, a new linear constraint with 

zero rest length is attached between two points - the selected vertex, and the point of 

intersection between the mouse vector and the previously generated plane. In this 

configuration, the selected vertex reacts to the attached constraint, while the user-selected 

intersection point stays firmly fixed in space. The end result is that the user can enact a 

constraint force and move the particle towards a location that is along a plane 

perpendicular to the camera ray. This movement algorithm allows for natural interaction 

that is compatible with any camera rotations or translations. Figure 12, in Section 5.3 



 26

later in this paper, visualizes the results of this interaction technique. The vertex of 

interest cannot be directly moved by the mouse, because the movement would result in 

very large changes in velocity due to instantaneous and large position changes caused by 

the finite precision of the mouse location on the screen. These large changes in velocity 

would potentially lead to numerical instability.  

4.2.2 Paused Interaction 

When the ITS animation algorithm is paused, the user may click and select any vertex 

and choose to “pin” or “unpin” it. Pinning a vertex enforces a constraint with zero 

degrees of freedom on the vertex of interest, and unpinning a vertex releases any 

constraints that are currently enabled on that vertex. A pinned vertex cannot change 

velocity or position in the virtual world. The blue sphere objects in Figure 11, in Section 

5.3, represent the locations of vertices that have been pinned by the user using this 

technique. The user is not able to move the positions of any vertices while the animation 

is paused, because this would introduce instantaneous changes in position and therefore 

very large acceleration values that would likely introduce instability in the physical 

model.  

4.2.3 Synchronized Interaction 

Due to the experimental nature of our system, we designed the ITS system to allow 

simultaneous live or paused user interaction of multiple experiments in parallel. This is 

possible because all experiments share the same mesh structure. When a user performs a 

live or paused interaction, the vertex that is selected in the current mesh has the same 

index into the underlying data structures. Because of this, the ITS environment can easily 
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attach simultaneous constraints and simultaneous forces on all meshes. When performing 

live interaction, the ITS program first calculates the interaction with the experiment that 

was selected with the mouse directly, and then determines the offset of the generated 

linear constraint in relation to the vertex of interest. This offset is then utilized by all 

other thin shell meshes to determine the location of the linear constraint points within 

their local coordinates. The result of this synchronized interaction is a more robust 

experimental interface that allows very precise and identical manipulation of many 

experiments in such a way that allows useful comparative analysis. A screenshot of the 

process of synchronized experiment interaction is displayed in Figure 7 of Section 5.1.  

4.3 Visualization 

As mentioned in Section 3.3, the ITS environment allows the user to view the physical 

model in two different ways in addition to the standard live rendering of the thin shell 

animation. In the first way, a dynamic histogram colors the mesh surface according to the 

distribution of one of three types of force values - total force, membrane force, or 

bending force – for all rendered vertices, in a histogram graph that can be dynamically 

adjusted according to the algorithms described below. This colorization process attempts 

to render the surface of the thin shell in such a way that it is easy to determine regions of 

high and low force at a glance, without resorting to the reading of numerical values on 

the screen. The second view relates to the temporal progression of the animation. With a 

fixed size buffer cache of all previous frames of the animation, the user has the ability to 

view the past progression of the current animation, including all vertex locations, force 

values, force constants, and global parameters, and use this information to analyze the 

effects of each of these animation parameters over time.  
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4.3.1 Histogram Compression 

The histogram compression algorithm attempts to analyze a histogram and adjust the 

upper and lower ranges so that the force values in the animation are distributed evenly 

across the entire histogram. This even distribution of values is desirable so that the 

limited precision of the histograms range segments and the corresponding force coloring 

are fully utilized. The algorithm pseudo-code is as follows:  

 
do { 
 boundariesChanged = false; 
 
      /* generate histogram table from current force values*/ 
 Histogram[] histo = generateHistogramTable(); 
 
 /* find segment with many values in lower region of histogram */ 
 lowerCounter = 0; 
 while(lowerCounter < histo.size()) { 
  if (histo[lowerCounter].numValues/avgNoOfValuesInSegments > 2.0) { 
   break; 
  } 
  lowerCounter++; 
 } 
  
 /* find segment with many values in upper region of histogram */ 
 upperCounter = histo.size() – 1; 
 while ( upperCounter >  -1) { 
  if (histo[upperCounter].numValues/avgNoOfValuesInSegments > 2.0) { 
   break; 
  } 
  upperCounter--; 
 } 
 
 /* avoid compression to range size zero */ 
 if(lowerCounter == upperCounter) { 
  if(upperCounter == histo.size()-1)  
   lowerCounter == upperCounter–1; 
 } 
 else 
  upperCounter == lowerCounter+1; 
  
 
 if(lowerCounter == histo.size()) { } /* no segment found */ 
 else if( lowerCounter != 0 ) {  
  /* segment of interest above lower boundary*/ 
  histo.minBoundary += 0.5*histo.segmentSize;  
  boundariesChanged = true; 
 } 
 else { 
  /* segment of interest at lower boundary */ 
  histo.minBoundary = histo[0].averageForceValue;  
  boundariesChanged = true; 
 } 
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 if(upperCounter == -1) { } /* no segment found */ 
 else if(upperCounter!= histo.size()-1 ) {  
  /* segment of interest below upper boundary*/ 
  histo.maxBoundary -= 0.5*histo.segmentSize;  
  boundariesChanged = true; 
 } 
 else { 
  /* segment of interest at upper boundary */ 
  histo.minBoundary = histo[histo.size()-1].averageForceValue;  
  boundariesChanged = true; 
 } 
}while(boundariesChanged && !oscillationOccuring()); 

 

The algorithm effectively expands the range if the edge segments contain many values, 

and slowly compresses the total range if segments within the histogram have excessive 

numbers of values within them. The boundary value compression occurs in half segment 

increments, because the entire histogram distribution changes upon each alteration of the 

boundary ranges, and even a small change could push many of the values outward 

towards the boundary segments. Expansion occurs by widening the range boundaries to 

the average value in the segments on either end of the histogram.  

 

Because we chose to analyze only the resulting histogram table segments and their total 

value counts at each iteration, our algorithm is simple and fast, but limited in precision. 

The algorithm does not necessarily converge on an ideal range size due to the fact that the 

compression process has a fixed precision of one half of an increment. In addition, the 

expansion process only moves outward to the average of the values in the edge range 

segments, which is not guaranteed to be beneficial for the histogram to reach its ideal 

balanced state.  As a result of this imprecision in making boundary expansion or 

compression changes, there is a chance that the algorithm will oscillate the movement of 

its range values infinitely about an ideal location. To prevent this, the ITS environment 

implements an oscillation buffer that records the last 50 iterations of boundary value 
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adjustments. If the average change recorded in this buffer approaches zero for both the 

upper and lower boundary, then oscillation is detected and the algorithm is stopped.  

 

Figure 5 shows a diagram of the compression and expansion process, and the middle 

frame of Figure 15 in Section 5.4 shows the visual result of this technique on a thin shell 

mesh. The mesh in Figure 15 initially exhibits a very small range of force magnitudes on 

all vertices. The application of the compression process results in a range that reveals the 

regions of relatively high force, close to the pinned vertex in the top of the screen. The 

weakness of this algorithm is that in situations where two segments with large numbers 

border an inner empty region, the final optimized distribution may still be largely uneven. 

Described in the following section, histogram equalization has the ability to correct for 

this type of uneven distribution, at the expense of uniformly sized histogram range 

segments.  
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Figure 5 - The ITS histogram compression algorithm.  

 

4.3.2 Histogram Equalization 

Like the histogram compression algorithm, histogram equalization attempts to evenly 

distribute force values across the entire histogram, to allow for utilization of the full 

discretized color spectrum for comparative force analysis. However, histogram 

equalization performs a nonlinear transform on force values based on the cumulative 

probability distribution of those values, resulting in an effectively non-uniform 

arrangement of range segment sizes. The benefit of equalization is its ability to distribute 

any histogram range evenly. The resulting color values reveal difference in range values, 

but the ranges themselves represent varying size segments, and accurate relative 

comparisons across range segments in the same image cannot be made easily. Therefore 
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equalization serves to more effectively optimize the use of the histogram and its range of 

color, at the expense of accurate force value comparisons.  

 

The histogram equalization algorithm is based on previous work in image processing, and 

the theory behind its continuous and discrete formations can be found elsewhere [8]. 

Figure 6 shows the discrete equation that is used in the ITS implementation of histogram 

equalization. In the equation, DA represents an arbitrary force value, DM is the number of 

color levels in the histogram, nk is the number of values at force value k or less, and N is 

the total number of force values in the data set. The rightmost frame of Figure 15 in 

Section 5.4 displays the beneficial results of this process. While the compression 

algorithm can only tighten the histogram range a limited amount, the equalization 

algorithm is able to visually enhance the variation in the vertices in the lower region of 

the screen by equalizing the use of the histogram range and therefore increasing force 

variation visibility. 

 

Figure 6 - Histogram Equalization 
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4.3.3 Animation Cache 

The cache of data that stores the history of the current animation can be accessed directly 

from the main ITS user interface. The cache is a fixed size buffer.  If it is filled, the 

current frame information overwrites the oldest frame information, and the boundaries of 

the buffer are updated internally. The main user interface presents an interface to the 

animation cache as a slider bar and a series of buttons that control navigation through the 

cache data. The slider represents the current information in the buffer, and the rightmost 

position on it is always the latest cache data. To achieve this translation from a graphical 

element to an internal data structure, the ITS program must convert the requested 

progress percentage across the slider bar into an index in the internal data structure. This 

process must take into account the circular nature of the buffer and ensure that all offsets 

are valid. The main ITS interface has the ability to request the next or previous frame 

from given a current frame index received from the buffer at an earlier time, or specify 

any arbitrary buffer location using a percentage value as a request parameter.  

4.4 Full Feature List 

The ITS environment is written in C++ and OpenGL, and makes use of the GLUI 

graphical user interface library [18].  Because there are many features of the ITS 

environment which are minor in nature, but contribute to the user experience as a whole, 

we have compiled a list of all the features that are available in the ITS environment, as 

follows: 

 

 



 34

 Animation Features 
o Implicit integration with the Modified Conjugant Gradient Method 

o Explicit integration 

o Adaptive time step 

o Arbitrary mesh file support 

o Vertex constraints with 1, 2, and 3 degrees of freedom 

o Vertex-sphere and vertex-cube collision detection 

 User-controlled Parameters 
o Gravitational acceleration 

o Total mesh weight 

o Desired time step size 

o Membrane force constant per experiment 

o Membrane force dampening constant per experiment  

o Bend force constant per experiment 

o Bend force dampening constant per experiment 

o Location and existence of three environment collision objects: two spheres 
and a cube 

o Camera rotation and translation 

 User Interaction 
o Playing and pausing of animation 

o Pinning and unpinning of vertices in a paused animation 

o Spring-based interaction with vertices a playing animation 

o Synchronized interaction across all experiments 

o Navigation of simulation cache: play, pause, first frame, last frame, next 
frame, previous frame 

 Visualization 
o Simultaneous mesh experiments 

o Membrane force coloring, direction vectors 

o Bend force coloring, direction vectors 

o Total force coloring, direction vectors 

o Large control points on each vertex 

o Adaptive time step size per experiment 

o Histogram force distribution for current frame 
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o Current histogram force range values 

o Optimized compressed histogram range 

o Equalized histogram values 

o Wire frame rendering 

o Visible or invisible environment collision objects 
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5 Results 

In this section, we will highlight some of the important features of the ITS environment 

that allow it to act as a truly free form experimental environment. Many of the features 

implemented in the ITS environment, such as adaptive time steps, camera view 

modification, and animation cache navigation, are difficult to demonstrate with still 

screenshots, but are completely functional in the implementation.  

5.1 User Interface Overview 

The main ITS user interface is displayed in Figure 7. In this screenshot, a user is 

interacting with four simultaneous experiments with varying strengths of membrane and 

bending forces, and has histogram force coloring enabled. When a user loads up the 

program, he or she uses the buttons in region A of the screen to select the total mesh 

weight and load an arbitrary mesh. Region B of the image outlines the region of the 

interface where the user can modify any of the force or dampening parameters for each of 

the experiments. Region C contains the view controls which can rotate each experiment 

independently on its own axis, or rotate the entire group of experiments at once. Region 

D is where the user is able to control the progress of the animation algorithm. In this area, 

the user can play and pause the animation, reset the experiments and global parameters 

back to their original initial conditions, or restart the animation system and reload an 

entirely new mesh for experimentation.  Region E outlines the group of global controls 

which allow the user to alter the gravitational acceleration or time step, enable or disable 

the displayed cube and sphere environment collision objects, enable or disable the 

rendering of force vectors to augment the force coloring, and enable or disable wire 
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frame rendering. Region F houses the controls for the dynamic histogram capabilities in 

ITS. From this location in the interface, the user can enable force coloring, select the 

forces to be represented on the screen, and reset, compress, or equalize the histogram for 

the current frame or all recorded frames. Region G highlights the visual representation of 

the force histogram, as discussed in Section 4.3. At the bottom, region H outlines the 

group of controls that allow the user to play back cached animation data, and select any 

frame of interest for further analysis. Finally, region I marks the visual cues for the 

current adaptive time step status. Each of these bars represents the size of the current time 

step for each experiment on screen, in relation to the requested time step indicated in the 

global preferences panel on the right side of the screen. If the bar is full, then the current 

step size is equal to the requested step size.  

 

Figure 7 - The ITS Graphical User Interface 
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5.2 Animation Features 

While the explicit and implicit integration capabilities are fully functional, screenshots 

would not help to convey the results of the implementation. As expected, the explicit 

mode requires an extremely small adaptive time step, on the order of 0.00001 seconds, 

1/100th the size of the implicit mode time step, in order to keep the animation stable with 

high membrane and bending force coefficients. Figure 8 shows the loading of various 

arbitrary mesh files. The classic bunny model in the middle has no color assignment 

embedded in its mesh file, so it is rendered with a default powder blue coloring. In this 

screenshot, the green dots represent the locations of vertices on the model, and also serve 

as a representation of the control points of user interaction during live and paused 

animation states. Figure 9 demonstrates a set of simultaneous experiments with varying 

membrane and bending force constants. Each displayed experiment is shown at the same 

moment in time, and demonstrates varying reactions to collisions or pinned vertex 

constraints.  

 

Figure 8 - ITS supports arbitrary mesh files. 
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Figure 9 - Two mesh experiments. A hollow half sphere impacting an invisible cube, and a hanging 

hollow half torus are shown at the same moment in time, with decreasing membrane and bending 

force constants, from left to right, kb=km=100000, 12500, 1562, 195. 

 

In Figure 10, both constraints and environment object collisions are shown to be 

functioning correctly. The portion of the sphere appearing through the blue sheet is due to 

the fact that we implemented simple vertex-sphere and vertex-cube intersection testing, 

and did not analyze triangle face intersections, since it was not an essential part of this 

project. The control points that appear blue in this Figure represent vertices which have 

been constrained in some manner. The vertices in contact with the sphere have been 

constrained along the vector that points from the center of sphere to their current location, 

and the constrained vertices on the ground are constrained along the y-axis.  
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Figure 10 - ITS supports simple vertex collision with the environment. Blue control points represent 

constrained vertices.  

 

 

5.3 User Interaction 

The screenshots in Figures 11 and 12 demonstrate the paused and live interaction modes, 

respectively. The v-beam in Figure 11 has one end pinned, while the rest of the mesh is 

left to succumb to gravity. Each displayed mesh has a varying level of bending force, and 

is shown at the same moment in time. As is expected, the v-beam loses its structural 

rigidity when its bending energy is reduced. Figure 12 demonstrates live user interaction 

using a spring force. Here, the user has selected the vertex colored by a red control point, 

and is dragging the cursor over the location of the blue control point, which represents the 
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target constraint location. In addition, force coloring is enabled in this image, revealing 

the redder regions of high force at the point of user interaction.  

 

 

Figure 11 - A simultaneous experiment with pinned v-beams with varying decreasing bending forces 

from left to right, kb=100000, 12500, 1562, 195. 

 

 

Figure 12 - Live Interaction. When a user clicks and drags a vertex, a linear constraint force is 

applied to the selected vertex towards a world coordinate determined by the mouse. The arrow on 

the screenshot shows the direction of the force.  
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5.4 Visualization 

In the screenshot in Figure 13, a hollow cylinder lies flat on the floor, and its surface is 

colored according to the histogram coloring scheme. Force vectors are also visible on its 

surface, which augment the coloring by indicating the direction of the force currently 

being viewed.  Similarly, Figure 14 shows the progression of force coloring of the 

duration of an animation. In this example, four simultaneous experiments with a mesh 

cylinder of varying membrane and bend constants are analyzed, with membrane forces 

only enabled in the upper left, upper right, and lower left frame, and total forces rendered 

in the lower right frame. The final frame demonstrates the membrane energies canceling 

out the gravitational force on the top of the cylinder, and residual vibration between the 

floor boundary and the bottom of the cylinder introducing a small amount of force on the 

lower side of the object.  

 

Figure 13 - Visible force vectors and vertex coloring 
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Figure 14 - The progression of forces in four dropped cylinders with varying internal force 

contributions. Shown are the initial conditions (top left), two steps of internal force progression (top 

right and bottom left), and final total force magnitudes (bottom right). 

 
The histogram compression and equalization algorithms are displayed in action in Figure 

15. The plane mesh in this screenshot is pinned at one vertex in the upper area of the 

screen. Initially, that default static force distribution is insufficient for revealing the force 

variations on the mesh at this stage in the animation, as displayed in the leftmost frame. 

In the middle frame, the compression algorithm has altered the range as much as it could 

while maintaining fixed size range segments. In this state, the image has a larger contrast 

and the variations in the forces across the upper region of the mesh are more apparent, 

but much of the lower region shows very little visual variation. In the rightmost frame of 
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this figure, the equalization algorithm properly distributes the force values across the 

histogram, at the expense of fixed color range segment sizes. In this final stage, the force 

variations are very visible, but judgments about their relative force intensities would be 

inaccurate, due the nonlinear force value mapping.  

 

 

Figure 15 - Histogram Compression and Equalization. The original histogram range (left), the 

compressed range (middle), and the compressed and equalized range (right). 

5.5 Thin Shell Model Weaknesses 

During some of the testing performed on both the ITS interface and the underlying 

physically based animation, we observed directly the weaknesses in our bending force 

approximation.  As discussed in Section 4.1.2, the bending forces in our physical model 

are simple linear constraints across the shared edge of two triangles. Given a rest 

condition in which the angle between a pair of triangles is close to 180 degrees, any 

bending that occurs will not be resisted strongly until the bending angle has extended far 

from that nearly flat configuration. This occurs because the linear bending constraints are 

nearly parallel to the pair of triangles, and imbue little force along the normal of each of 

the triangles in question until a large amount of deformation occurs. This becomes 

extremely obvious in the simultaneous experiments performed in Figure 16. In this 
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Figure, two sets of experiments are run. In the upper set, the bending constraints were 

kept equal and the membrane forces were decrease in order of left to right and top to 

bottom. In the lower set, the membrane force constraints are kept constant, and bending 

forces are reduced. Given equal bending force constants, the upper set of panels shows 

that when the membrane force is low, the bending force is the primary source of 

structural integrity. When this occurs, the bending force cannot withstand the 

gravitational force on the top of the cylinder, and the faces along the top invert their 

angle. This occurs because the initial configuration of the cylinder generates bending 

constraints that are all nearly 180 degrees, and therefore weak until significant 

deformation occurs. In the bottom set of panels, the membrane force is equal amongst all 

experiments, and prevents the angle inversion from occurring, showing that the bending 

force in the cylinder model contributes very little in these experiments, due to the high 

angles between all the faces of the mesh.  
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Figure 16 - The progression of two animation runs. The circled mesh reveals a weakness in our thin 

shell approximation. 

 

Another inherent weakness was found in our algorithm that stems from its discrete 

nature. This weakness is not unique to our implementation, but extends to any physically 

based animation model that relies on a discrete geometric formulation of an object to 

determine the dynamics involved. Figure 17 demonstrates this weakness. The screenshot 

shows a v-beam constrained on an entire side and left to hang under the force of gravity. 

While, in the middle of the mesh, the bending and membrane forces are countering 

gravity equally, the corner vertices have less support from neighboring geometry and thus 
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gravity is countered in weaker manner, resulting in higher force magnitudes in these 

locations. However, both corners do not exhibit expected symmetric force distributions, 

due to the discrete triangulation of the mesh.  This structure results in one corner vertex 

that has three membrane constraints to neighboring vertices, as seen on the right frame of 

Figure 17, while the other corner vertex in the left frame has connections with two 

neighboring membrane constraints and a single, weaker bending constraint across to the 

neighboring triangle. Therefore, the inherent discrete geometry of the model prevents it 

from accurately mimicking the symmetric forces that would have resulted from a similar 

real world experiment with a thin shell material in a similar configuration. In order to 

more fully replicate the real world, this algorithm would require a more complex, 

continuous underlying mathematical model independent of any discrete approximations. 

This same figure also further reveals our weak bending force approximate in the 

alternating vertex colors, and therefore vertex force values, that occur along the middle of 

the v-beam. Ideally, all the middle vertices should have an identical bending force 

magnitude, because they are experiencing the same gravitational pull, but due to our 

linear constraint approximation, the flat edge angles along the top and bottom flap of the 

mesh are contributing much weaker force vectors compared to the high angle bending 

constraints that occur on every other vertex, each of which is part of a triangle that shares 

an edge with another triangle across the sharp acute angle in the model.  
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Figure 17 - Unrealistic Forces. Two panels (left, right) show bending force views of two sides of the 

same experiment on a v-beam with pinned vertices. The forces are asymmetric due to the underlying 

triangulation of the mesh. The black lines indicate triangle edges. 

 

5.6 Performance  

The ITS environment uses a large amount of memory to store animation cache data, and 

performs a large number of mathematical operations per iteration, resulting in a 

simulation that has some very obvious performance weaknesses. On our test system, 

which is an Athlon 64 3500+, with 1 GB RAM, and an ATI Radeon X850XT graphics 

card, the simulation became unusable, with non-interactive frame rates, at approximately 

1200 vertices on screen at once. Our tests were performed with a 1300 frame cache. Each 

frame of data occupies approximately 125 bytes per vertex. In terms of memory usage, 

with the establish 1300 frame cache, one gigabyte of memory will be occupied by purely 

frame data when approximately 6614 vertices are rendered on screen at once. According 

to these calculations, the simulation on our test machine is primarily limited by its 

calculation speed, as opposed to its memory footprint. These testing results are limited to 

a single computer and therefore are useful only for grasping a general idea of the level of 

performance that is achieved with this application. Due to the fact that the ITS 
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environment and its thin shell model were constructed to demonstrate a unique tool with 

no known comparable implementations, it was not constructed with optimization and 

competitive performance analysis in mind. In addition, much of the computational limits 

of the ITS system arise due to the specific implementation of the thin shells model, which 

is not the core focus of this paper. Because of both of these reasons, there is likely much 

room for both memory and computation optimization throughout the program. 
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6 Conclusions  

The Interactive Thin Shells application we have designed and implemented has fulfilled 

our ultimate goals for the project, through intentional and unintentional means. Our goals 

were to construct an application that provides an experimentally-focused, open, 

informative and very accessible interface to a physically based animation algorithm. With 

these higher level intentions in mind, we examined related research areas and turned to 

the more specific requirements of Michael Rooks and his framework for VIS applications 

[21]. These requirements served as a basic guide for the construction of our simulation. In 

Figure 18 below, we compare these requirements to the final implementation of our 

system. Ultimately, we satisfied each one of these requirements in multiple ways, so that 

the user has a large array of useful visual information available to them.  

Rooks’ VIS 
Requirements [21] 

Interactive Thin Shells 

1  Intervention  Vertex pinning/unpinning 
 Mouse-activated constraint force 
 Animation play/pause/reset 
 Collision object enabling/disabling/movement 

2  Inspection  Cache of vertex locations, experiment and global 
parameters 

 Displayed histogram range values 
 Displayed adaptive time step values 
 Displayed experiment and global parameters 

3  Specification  User-defined mesh weight, force constants, 
dampening constants, gravity, time step 

4  Visualization  Shaded rendering 
 Force histogram coloring 
 Wire frame rendering 
 Force vector rendering 

 
Figure 18 - A comparison of VIS requirements and the ITS implementation 

 



 51

Beyond simply matching features of our software to a set of established requirements, the 

ITS program performed its task well enough that we were able to unintentionally use it to 

identify substantial weaknesses in the chosen thin shell model. While the bending angle 

constraint simplification was known to be imperfect, the subtle behavior of weak bending 

forces at extremely obtuse angles and their results on the animation as a whole were only 

obvious after we completed and replayed simultaneous experiments on multiple meshes 

while varying specific parameters. In addition, the force coloring patterns in specific 

pinned mesh configurations were another clear indicator that reinforced the notion that 

our simplistic bending force was not a completely adequate model in many cases. The 

additional discovery of asymmetric forces that resulted directly from the discrete 

triangulation of a mesh was another phenomenon that was found only after close 

inspection with the ITS interface. In this case, the histogram compression algorithm was 

essential in allowing us to perceive the force asymmetry in the v-beam mesh in Figure 17. 

Due to the fact that many physically based animations represent real world objects with 

discrete approximations, such as triangles meshes, the ability to discover and analyze the 

flaws in these approximations is an extremely valuable feature of the ITS interface, and 

further exhibits the usefulness of the tool in situations outside of thin shell animation. 

 

Our software has therefore shown itself to fulfill a set of established requirements for 

interactive computer simulations, as well as serve as a tool in discovering and analyzing 

both a flawed algorithm and an inaccurate object representation. It therefore has promise 

as a fundamentally useful tool for computer science students and professionals interested 

in the complex workings of modern physically based animations. It is our hope that the 
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interface features of the ITS system will help to guide the development of similar 

interactive interfaces for more complex physically based models. There is no doubt there 

are a large number of animation algorithms in existence that could benefit from a more 

tactile and experimental interface which can help to clear the muddled waters of abstract 

mathematics and help bring it into the light of intuitive experience.  
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7 Future Work 

The ITS interface can be further developed in a number of ways. The most important 

optimization would include more efficient storage of simulation cache data through data 

packing or compression. The cache capabilities could also be extended to support 

buffering to hard disk when dealing with very large meshes or very long animation runs. 

In addition, further cache improvements may involve the support the progression of 

animation calculations from a past point in time. This action would erase any existing 

information in front of the selected cache buffer location, and allow a user to recalculate 

past animation events with new experiment parameters. With this enhancement, the cache 

size would be increased to store past collision and constraint information, but ultimately 

enable more flexible control of the animation as a whole. The current iteration of our 

interface does not have the capability of saving the settings and cache generated during 

an experiment. Future work would involve implementing a saving and loading system 

that stores and loads the mesh data, cache data, and other settings together in some 

unified manner, so that a user can save the data generated by the ITS interface for later 

review and analysis. The force coloring scheme could also be improved by implementing 

a form of surface shading that does not excessively obscure the surface coloring, yet 

preserves the visual depth that is often lacking in our current implementation. To make 

the ITS program a more useful and widely accepted design, the user interface, histogram, 

and caching mechanism could also be constructed to access a standard API which would 

connect to a set of animation “plug-ins” that contain complex animation code. These 

pieces of software could partially customize the ITS interface for their specific algorithm 
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parameters. In this way, the ITS design would be a truly generalized and accessible 

interface for a large assortment of mathematically intensive animation models. The 

underlying thin shells simulation itself can also be greatly improved. Primarily, it would 

benefit from more optimization time. Many of the underlying matrix and vector 

mathematics could be offloaded to the highly parallel graphics processors so prevalent in 

home computers today [19]. Furthermore, the thin shells model could be modified to 

completely implement the more accurate discrete shells model of Grinspun et al [9], and 

therefore provide a more realistic animation of thin shell materials.  
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