Novice-friendly Authoring of Plan-

based Interactive Storyboards

James Skorupski and Michael Mateas

Expressive Intelligence Studio
University of California, Santa Cruz
{jskorups, michaelme}@soe.ucsc.edu

Abstract
Story Canvas is a visual authoring tool for theatiom of
interactive, generative stories. Aimed at authoithaut a
technical background in computational storytellingyr
system takes an existing author goal-based nagrativ
planning architecture and adds a highly visual @ity and
reading interface to the technology, using the l@ogg of
storyboards and comics as a framework for bothcaintb
and interacting with the resulting narratives. lhistpaper
we describe Story Canvas and its evolution from our
previous authoring work, including how our intedac
choices have been driven by our previous expergendgth
non-technical authors, and describe the detaiteaoElating
the visual authoring constructs into story planshimi the
story generator.

Introduction

The authoring of compelling interactive and gerieeat
stories traditionally demands expertise in compauzt
models of story structure and execution, as wellthes
background knowledge to formulate compelling platsa
rich dialog, character conflicts, and other stolgneents.
The rarity of individuals with this cross-discipdiry
experience in the relevant technical and creative
backgrounds motivates our work in this area. Toresil
this scarcity, we have created Story Canvas, aceevi
friendly authoring tool for interactive, generatigtories
that presents a visual authoring and reading exterbased

on the spatio-temporal language of storyboards and
comics. It is a major evolution of our previouseiractive
story authoring system, Wide Ruled, and is desigimed
many ways as a response to our experiences with tha
system in our multiple class room evaluation sewssio
(Skorupski 2009).

Our underlying story planner is based on the
UNIVERSE story model introduced by Michael Lebowitz
in 1985, in which he described an HTN-style mod&l o
story structure and execution based on hierardigical
arranged author goals that represent the storptintes of

This material is based upon work supported by tatodal Science
Foundation under Grant No. 0747522.

Copyright © 2010, Association for the AdvancemeiAdificial
Intelligence (www.aaai.org). All rights reserved.

an author, and plot fragments (tasks) that consistdered
steps (including subgoaling) to accomplish goa338).
Wide Ruled, our previous work, is a UNIVERSE-based
interactive textual story authoring system utilgira
traditional GUI complimented by non-technical nékm
terminology, natural-language descriptions of técdin
plan components, and step-by-step guidance fomibes
complex tasks (Skorupski 2007, 20D9)Vhile it allows
many users with little or no programming experience
(“non-technical” or “novice” authors) to createangsting
stories, it still suffers from a number of concegthurdles
for these authors. Creating complex precondition
constraints, binding and referencing data variabéesd
managing large story hierarchies have all proverbeo
troublesome in previous evaluations of Wide Rulsthry
Canvas addresses these difficulties by abstaetimay
from the underlying story planning model and hamgili
some of these complexities automatically. It intrcels a
richer, visual method of storyboard-based storiytglhnd
provides a visual interactive representation of thgh
level story structure that we hope will allow large
audience of novice authors to utilize the poweroof
computational storytelling model. Story Canvas gates
stories in the reactive planning language ABL (Maté&
Stern 2002). While our system utilizes only a stilo$¢he
entire ABL language, the implicitly concurrent chpiies

of the planner allowed us to easily implement iattive
features of the story model, and allow for future
enhancements of the underlying story model suctulbs
concurrent story plans, and integration into exdegame
engines (McCoy et al 2008, Weber et al 2010). lis th
paper we introduce the Story Canvas interface, riesc
how its interface components and features are eu@tivby
our previous experience with the Wide Ruled story
authoring environment, and describe our novel nuthio
translation from the storyboard interface to theertying
reactive planning code for the story generator.

Related Work

The motivation behind our chosen storyboard model o
interaction is based on previous analysis of conaiod

! Wide Ruled is freely available at: http://eis.uesie/Wide_Ruled

storyboards, and the success of domain-specificalis
programming languages. The sequential art of stamds

have been an extremely effective spatio-temporal

visualization technique for films, comics, graplicvels,

computer animation, and game design. It has been th
subject of extensive analysis (Eisner 1985, McCloud

1993), and provides a background for the desigrouwf
authoring system and the visual metaphors useuttéoaict
with the underlying model. With Story Canvas, wevda
moved the author further away from the underlyingle

and structured editor style of our previous workd an
stepped into the visual domain. While general Jisua

programming has traditionally been argued as ictffe
and inefficient for large and complex systems (\élit

1997), domain-specific visual languages have been

successful in many practical instances. These dechine
sound processing and music synthesis tools suchN&x
and Pure Data, and user interface builders in progrlike
Eclipse and Visual Basic/C++ . Closer to our domain
interactive media, systems such as StorytellingeAknd

Game Makerhave successfully provided visually enriched
game authoring experiences, but require some

programming of textual scripts to create compledengs
(Kelleher et al 2007). Kodu, introduced in 2009, as

successful and completely visual game programming

environment, but it is limited to a uniform modef o
physical movement and interaction, without suparthe
abstract computational structures and alternatios- n
physical interactions often desired in interactinzeratives
(MacLaurin 2009). Storyboards and comics are noewa

interface metaphor, and have previously been used t

automatically visualize generated story plans fommains
authored in a non-visual fashion (Jhala et al 2608zi et

(Skorupski 2009). It models the story structureafping
domain) as a set of hierarchical plans that encempae
or more ways to accomplish a story goal for thehawut
Like Wide Ruled, a Story Canvas story contains taocge
author-created story objects, represented as “Cteasi or
“Environments”, each with associated attribute-eatrait
pairs, and relationships to other story objecsnglwith a
strength value for each relationship. Stories almatain a
set of “Plot Point Types”, which define types ofiselic
attribute-value data stores which are then insigadi as
“Plot Points” and utilized only during the storyrggation
process. “Author Goals”, with optional story object
parameters, are the primary unit of story planrimghis
tool, each containing one or more “Plot Fragmersit
describes a set of actions that fulfill its paranthor goal.
Plot fragments have precondition constraints thastnall
be true before execution. These constraints relythen
current state of the story world during generatma can
also bind story objects (characters, environmeantd, plot
points) and their attributes for later use in thame plot
fragment. Additionally, plot fragments contain at s
sequential “Story Actions” that can modify the stevorld
during execution. These actions can modify story
characters, environments, and plot point instaneesured
in the precondition, create and delete plot paistances,
calculate new values, and output parameterized(itexhe
form of narration, speech and thought bubbles).

Story generation in Story Canvas begins with al¢opl
initial author goal, which randomly selects amongit
executable plot fragments with valid preconditioasd
then sequentially executes all of its containedysaztions
to successfully complete a story. If the generator
encounters a story action that pursues anothepagtial,

al 2008). From the space of comic-based programming the process repeats and a new plot fragment istsdléo

work, previous research by Fernaueus and Kindbbe) e
discusses graphical rewrite rules as well as moreptex
general programming constructs represented in céonic
(2006, 2007). While this work focuses on purelypipiaal
modifications of visual objects, our system combirtiee
explicit visualization of story objects with repesgations
of abstract logic and computational constructs igeto
the domain of UNIVERSE stories. GingoldZomic Book

Dollhouse used author-created comic strips representing

static story graphs and used simple graphical ¢riggo
allow reader navigation of the graph (2003). Ourrkvo

aims to combine the flexibility of a general visual
programming language and with the simplicity and

resilience of a structured editor by utilizing thpecific

domain of UNVERSE stories to inform our visual dgsi
and user interaction, and relying on this restdaiemain
to avoid the potential visual clutter and scalintfafis of

general visual programming.

Story Model

The story generation model in our system is basethe

HTN-style UNIVERSE model of story generation

2 http://www.yoyogames.com/make

accomplish the subgoal. The relationship betweehoau
goals and their associated plot fragments descrides
potential tree-like space of stories, in which agk
generated story is represented as a traversakdfdl, as
seen in figure 2. The result of this story generafpirocess
is a single story instance among many potentialiegp
represented in Story Canvas as a series of stonylpames
visualized on the screen, as is seen in Figureead®s of
the story interact with these visual stories usingodified
form of Wide Ruled’s interactivity model, which iolves
author-specific interactive actions that triggeterteaved
goals at any time during generation (discussed)late

The Story Canvas-ABL Connection

Each story world in our system is represented byABh
program that contains story object information glavith
hierarchical behaviors that mirror the relationshgiween
author goals and plot fragments in the Story Carstasy
model. In our case, a single story world represargsgle
ABL “agent” that is executing a story plan while
interacting with the interface to the user. Thehautgoals
and plot fragments are translated into ABL behayiand
the initial story object information is translatedo types
and instances of ABL Working Memory Elements (or

WME's) (Mateas & Stern 2002). Each time the author this story hierarchy is not a strict direct acydi@ph. Plot
makes changes in the storyboard interface, Storw&a fragments can subgoal author goals recursively,
generates updated code with the corresponding elsang represented by the dotted arrow connecting two cauth
During generation, this ABL agent is launched, and goals in the tree. In addition, a goal can be salegbby
proceeds to asynchronously communicate with our more than one plot fragment throughout the stond a
storyboard interface, transmitting user interadidaa the therefore appear in multiple places in the hienarch

planner, and receiving information about the résglstory
plan as it is generated. Figure 1 depicts the tactire of
these translation and generation steps. In thigraia, the
“ProxyBot” element is an asynchronous arbitratiagelr
than handles communication with the Story Canvas
interface. The generation architecture is simitathat of
the ABL Wargus and ABL Starcraft project architeet
(McCoy et al 2008, Weber et al 2010).

Translateto ABL Agent Generate Story

Author Goals Characters, Reader

and Plot Environments,
Fragments Plot Point Types

Generate

Rendered Interact,
Storyboard Continue
Static ABL Story
Utility
Code Story Canvas

ABL
Behavior

Tree

Interaction Resulting

SCABL Agent Code Static Comm. ‘ Commands oo Figure 2. The Story Canvas story structure interfae. Groups
Clele Fremowork ProxyBot of plot fragments are contained within author goalsand each
\i"mp"e/ plot fragment can be connected to one or more authgoals,
A Reent represented by edges in the hierarchy.
Figure 1. The Story Canvas planning architecture, epicting Lessons learned: visualizing large story space®Vide
the translation from the story model to ABL plans,and the Ruled used a simple hierarchical list to depict stery
generation of a story instance. structure, which proved to be unwieldy for largergt

. spaces. The move to a zoomable, pannable visualrbiey

Authoring in Story Canvas interface allows authors to deal with much largtarys
Constructing a Story Canvas story world requires th Spaces. A story world in our system can be discctede
author to create a set of objects upon which teeyst into multiple hierarchie: a single author goal esignated

structure acts (characters, environments, plottpgives), as the start goal (in figure 2, the top-most geahe start
as well as the story structure itself (author geaid plot goal) before story generation begins, but indepensiery
fragments). Here, we will focus on the two most pter trees may exist in the story world at the discretos the
aspects of the interface: authoring the story hiéng and author. This interface makes it easy to spot distin
creating plot fragments. In the following section& will hierarchies (see the two small hierarchies at titeom of
describe the interface for authoring each comporieaw figure 2). Multiple hierarchies can be a remnantaof
this interface has evolved from its equivalent irideV incompletely-authored story or a failure to include

Ruled as a response to our previous lessons leaametd ~ appropriate author goal in a plot fragment (a bog)they
finally, how this feature is implemented in the ABL Mmay be intended for activation during generation doy
planner. interactive action specified by the author.
Implementation: From story trees to behaviors. Story
; Canvas goals and fragments are converted into ABL
The .Author Goallan.d Plot Fragmgnt Hierarchy behaviors for execution. All fragments for a givaathor
The interface for viewing and modifying the goadment goal are converted into multiple behaviors with t#zene

story space is shown in figure 2, which depictsamjsle method signature, and ABL’'s behavior arbitration
murder mystery story in the Story Canvas interfdgeals

are represented by dotted outlines around groutebefed sequential ~_behavior - MakeDrama () {

precondition {}

plot fragments. This hierarchical layout is autocwly subgoal - Introduction();
generated and adjusted as new author goals anudrag Shoeal Carinountert:

are created and old ones are deleted by the authorder subgoal TheFight();

: : subgoal LoversRevealed();
to deal with potentially very large story trees; thterface <ubgoal ChooseLoverorHusband():

can be panned and zoomed across the hierarchy.thi®re subgoal Conclusion();

author can create, delete, and edit goals, arrfmagments, ’
and create empty fragments and delete existing. Offes Figure 3. A plot fragment for the initial author goal
edltlng of individual plOt fragments IS more Compland “MakeDrama" for our example story, in (abridged) ABL

described in the next section. It is important tdenthat code.

mechanism analyzes preconditions and automatically These

selects a valid plot fragment during story generati
(Mateas & Stern 2002). Figure 3 shows the ABL-ewchbd
example of a single plot fragment for the authomlgo
MakeDrama in an example story. Here, we have no
precondition, and sequentially execute seven augbais

in order to complete the story. These author goady
have plot fragments that in turn call other autoals,
resulting in our hierarchical structure.

Plot Fragments

Story Canvas presents a plot fragment as a setoof s
panes for both the precondition and the story asti@and
hides some of the complex computational constrtitis
caused problems for non-technical authors in oavipus
evaluations of Wide Ruled. Figure 4 shows a samjié
fragment being edited in Story Canvas. Precondition
constraints are contained in the left-most pand,tha rest
of the panes contain story actions. Below eachy gtane
is a smaller pane, which contains abstract, nonalis
constraints and story actions, that affect elem#ras will
not be visible to a reader of the resulting stquipt(point
constraints and modifications, and calculations nefv
values are located in these panes). If an actiom waly
has non-visible actions, then it will not be disg@d during
story generation. As a plot fragment is created, ghthor
can zoom and pan in this interface, resizing eléman
will to fit into each story pane. While there isnvalys a
single precondition pane, there can be any numbstooy
action panes in a single plot fragment.

Plot Fragment: Authoring Preconditions

During generation of a story in Story Canvas, the
precondition for each plot fragment is a list of
requirements that determines whether it is eligiiolebe
selected as a possible way to complete an authak go
These requirements are a list of constraints onréies and
relationships within characters, environments, giat
points, and every constraint must be true simutiasky
for the plot fragment to be valid and ready to wéhin a
story. In addition to providing an eligibility test
preconditions bind characters -
environments, and plot point: Precondition

“blank” icons therefore represent unknown,
potential story objects, and correspond to objptésed
into the story action panes on the right. Intraegbj
constraints on individual objects, such as “age9* dr
“name John” are contained within the small box
hovering next to each icon. Inter-object constgimthich
relate two dynamically bound objects, are represkiity

an arrow between the icons, showing that thosedtyects
have an inter-dependency

Lessons learned: eliminating temporary variable
bindings. This process of naming and referencing a
variables within a plot fragment was a major prablfor
non-technical users authoring stories in Wide Ruled
(Skorupski 2009). The graph-based approach constrai
authoring approach avoids the tedious and confusing
management of variable name bindings and referefi¢es
have eliminated explicit name management by viguall
linking story objects to the bindings in the coastt graph.
Implementation: From graphs and text boxes to ABL
preconditions. Figure 5 shows the ABL code that
corresponds to the plot fragment depicted in Figuréhe
precondition block in figure 5 depicts the bindimg
character, environment, and plot point informat&iored

in various WME objects. Within ABL, binding a fietd a
local variable is represented by thlie symbol, while
standard java-style comparison operators are used t
compare fields to variables and literals (MateasSt&rn
2002). The management of variable names is contplete
hidden from the author. Rather, constraints arectih as
graph relationships between objects in the autgorin
interface.

Plot Fragment: Authoring Story Actions

Story action panes are depicted to the right of the
precondition pane in figure 4. Actions can subgamathor
goals, modify objects captured in the precondition,
create/delete plot points, calculate new valuespldy
static or captured objects with varying poses and
composition, and output parameterized text in tirenfof
narration blocks, speech bubbles, or thought bgbble
Modification of the traits of characters/environrterns

Actions

modification within the plot
fragment.

As seen in figure 4, these
constraints are represented as

to local variables for use anc
o]

After work, <char.name> and
<char.name> decide to spend a
romantic evening at <env.name>

Later that night ... a rendezvous

Where have
youbeen?! E!

graph of character anc —m -

environment icons. Becaust =

preconditions are meant 2% | e E3Y |.__1__,
characters,

capture
environments, or plot points,
which are dynamically selectec
during story generation, theil

Fragment 4 Fragment5

appearance is not kr]OwrFigure 4. The Story Canvas
during the time of author

plot fragment editor. 3houetted objects represent dynamically

ING-pound story objects, and images represent staticezhents.

sequential behavior

precondition {

(CharWME id::chID1 Name::name1l)

(CharWME id::chID2 Name::name2 Husband==chID1)

(CharWME id==chID1 Friend==chID2)

(CharWME id::chID3 Name::name3 Loves==chID2)

(CharWME id==chID2 SecretlyLove==chID3
FavPlace::place)

(EnvWME id::envID1 Name==place Description::desc
daytime==true)

tensWME = (TensionPPWME Dramalevel > 0.5)

progWME = (ProgressPPWME HusbandSuspects == false)

TheEncounter () {

g
Figure 5. The (abridged) ABL code generated for the

precondition story pane in figure 4.

shown as a small box hovering next to the unknowam i
of a captured object or static image of pre-setbcigect.
Editing of relationships between characters is cegias a
graphical link between avatars, similar to the rittject
constraints in the precondition pane. Plot pointe a
modified (indicated by small box), created (indezhby a
plus sign), and deleted (indicated a minus sign}thia
bottom non-visible pane, along with the creation of
calculated values. Like in the precondition pane,
dynamically bound characters are displayed as edlor
silhouetted icons, and statically chosen objecte ar
rendered with their associated image directly ire th
authoring interface. Parameterized text can bdalisp as

a narration block (as seen in the first and lamtygpanes in
figure 4), a thought bubble, or a speech bubblee Th
locations, sizes, and orientations of captured stadic
story objects, narration, speech and thought bsblds
well as text size, are customizable by the auttmgllow
for varied and interesting compositions.

In Wide Ruled, story actions were strictly ordetests
of actions. In the domain of storyboards, actioxisteon a
2D plane, and may not clearly reveal the underlyingar
ordering of the actions in the ABL story plan, whican
affect the resulting displayed information. In arde deal
with this ordering ambiguity, Story Canvas enfortks
rule that parameterized text, calculations,
modifications to objects may only reference infotioma
TheEncounter () {

and

sequential behavior
precondition {.}
mental_act {
workingMemory.delete(tensWME);
double newWifeVal =
workingMemory.get(chlD2).getWifeVal() — 0.1;

act showStoryPane(1, chlD1, chlD2,
subgoal IntroduceFrank(chiD1, chiD2);
mental_act {
workingMemory.get(enviD1).setVisited(true);
workingMemory.get(chlD2).setSuspicious(true);
workingMemory.get(chlD2).setWifeVal(newWifeVal);
workingMemory.get(frankID).setConfusion(2.0);
double newSecLove =
workingMemory.get(chiD1).getSecretLoveVal() —

}
act showSt oryPane(2,

mental_act {
workingMemory.get(chlD1).setSecretLoveVal(newSecL
workingMemory.add(new SuspicionPPWME(chID3));
progWME.setHusbandSuspects(true);

nanel, name2, envNane);

0.1;

chi D1, chlD2, chlD3,envlDl, nanel);

ove);

act showStoryPane(3, chlDl, chiD3);
subgoal loversConflict(chID1, chiD2, envID1);
}
Figure 6. The (abridged) ABL code generated for thetory

action panes in Figure 4.

contained within previous panes. This is seengarés 6
and 7, where new trait values are calculated betfoee
use in the next pane. Subgoaling in a plot fragnient
displayed as a narrow story pane with a dottedirmutl
containing an author goal name and the story abjecbe
passed as parameters to that author goal. Theragghbto

be subgoaled, along with its contained plot fragiieme
shown on screen below the current plot fragmenttock
access to the editing views for those elements.

Lessons learned: Hiding named variable creation and
reference.Like in the precondition pane, we hide variable
bindings and references within the story actionegato
simplify the authoring process. Whenever a storjoac
item needs to use the information stored in a cagdtstory
object (or value created in a previous pane), tkeru
double clicks on the object or calculation to bé&esHand
they can then select from a list of available infation:
previously calculated values, any trait or relasioip value
within previously captured or used story objects,aay
attribute of a captured plot point. No variable eanare
generated — a user selects the required piecetafden a
list of icons and attributes names that appeandwediting
and a this connection is then visually represerasdan
arrow to the referenced object or calculation. Ehasows,
shown stemming from the narration text box in thetf
action pane of the fragment in figure 4, are onlsible
when an object/calculation is selected, to avaitteting.
Implementation: From story panes to ABL plans and
back. Plot fragments are translated into ABL behavior
code like that shown in figure 6. A single behavior
encompasses all the story panes in a plot fragnherthe
code sample, themental_act construct is a block of raw
java code that we use to modify the working menxiage

of the objects in our story and calculate new vailédl the
actions for a single pane are executed in the otiuey
were created, followed by a command (or “primitive
action” preceded by theact keyword) called
showStoryPane(...) that gathers and passes along the
dynamically bound story plan information relevaotthe
corresponding graphical storyboard pane to the yStor
Canvas interface. This command immediately sends th
bound plan information to the interface which asess
stored assets (story object graphics and visuaposition
information) that are rendered to the screen feré&ader.

Reading and Interactivity

The reading and interaction interface for a geeeratory

is very similar to the authoring interface, as shoim
figure 7. The plot fragment shown in figure 3 ismlayed

to the reader, with unknown icons filled in withachcters
and environments, and object modification, inforiomt
reference arrows, plot point modifications, anccakdtion
actions hidden from view. This interface displays a
continuous comic scrolling from left to right untile story

is finished, using the arrow buttons to control the
generation pace and browse previous panes. StaryaSa
implements an asynchronous goal execution model of
interaction, in which story authors specify a sdt o

“Interactive Actions” for each plot fragment, whichn be
executed at any time during the execution of tregrhent.
These actions are separate goals, which can molo&y
story world and output completely new panes tostireen.
During generation, when an interactive action isvated,
the current fragment is halted, and the interaclieton is
executed completely, allowing for a dynamically
interleaved story with full authorial control ovarhat a
reader can do at different times during generation.
Lessons learned: Contextually-relevant interactive
actions, Wide Ruled had a similar interactivity model with
a global set of interactive actions. User feedbadicated
that creating global interactions that make serisevary
point in a story is difficult, so Story Canvas al® the
author to associate interactive actions with spegfot
fragments (Skorupski 2009). Those actions only appe
during the execution of their associated fragments.
Implementation: Reacting to input. At its core, the ABL
reactive planner is designed to execute concunpéaris
and interact with ever-changing inputs from a dyitam
external “world”. In our case, this “world” is theeader
interacting with our storyboard interface. By usitige
“daemon behavior” design pattern, described by Webe
al, we are easily able to constantly monitor fgrunhfrom
the interface with a parallel behavior, and intptru
execution of the current story plan at any pointiine to

wait on a user's command or to process a request to

activate an interactive action (2010).

Future Work and Conclusions

We have shown here the evolution of our latestystor

authoring interface, how it has evolved accordiagthe

evaluation of our previous work, and the technical

underpinnings that drive its capabilities. The neteps in
our work will involve evaluating our system withaw set
of non-technical authors, comparing the complextd
quality of stories created with Story Canvas witiose
made with Wide Ruled. From a technical perspective,
will implement reactive, intelligent story analydeatures
that give constant feedback during the authorimg@ss to
visualize the coverage of the potential story spaoel
locate areas of disuse, or infinite recursion. Wi also
implement additional comic book storytelling tedjuns,
such as varied story pane size, arrangement, afetiog,
line drawing styles and variations of shading. Fynahe

embracing a larger set of visual techniques fropraven
and effective storytelling medium, and ultimately b
applying these methods to author richer, more dymam
types of interactive story experiences.

References

Eisner, W. 1985. Comics and Sequential Art. Tamaféc
Poorhouse Press.

Fernaueus, Y., Kindborg, M., Scholz, R. 2006. Rwimg
Children's Programming with Contextual Signs.Aroceedings
IDC 06, Tampere,Finland.

Gingold, C. 2003. Miniature Gardens & Magic CrayoB@ames,
Spaces, & Worlds. Master's Thesis. School of Liem
Communication and Culture, Georgia Institute offrezlogy.
Jhala, A., Rawls, C., and Young, R. M. 2008. Lorggbo A
Sketch Based Intelligent Storyboarding Tool for &g
Machinima. InProceedings of FLAIRS '0fp. 386--391.
Kelleher, C., Pausch, R., and Kiesler, S. 2007ry8illing alice
motivates middle school girls to learn computergoamming.In
Proceedings of CHI 'Q7p 1455-1464.

Kindborg, M. and McGee, K. 2007. Visual programmiwigh
analogical representations: Inspirations from aisgtnanalysis
of comics. J. Vis. Lang. Comp.pp99-125.

Lebowitz, M. 1985. Story Telling as Planning andatréng.
Poetics 14, pp. 483-502.

MacLaurin, M. 2009. Kodu: end-user programming a®esign
for games. IrProceedings of FDG '0®rlando, Florida, April 26
- 30, 2009.

Mateas, M., and Stern, A. 2002. A Behavior LanguiagesStory-
Based Believable Agents. IEEE Intelligent System@1:39-47.
McCloud, S. 1993. Understanding Comics. New Yorky:N
Kitchen Sink Press/Harper Perennial.

McCoy, J, and Mateas, M. 2008. An Integrated AdenPlaying
Real-Time Strategy Games. IRroceedings of AAAIAAAI
Press, 2008, pp.1313-1318.

Pizzi, D.; Cavazza, M.; Whittaker, A.; & Lugrin J-12008.
Automatic Generation of Game Level Solutions asy®imards.
In Proceedingsf AIIDE '08 pp. 96-101

Skorupski, J, and Mateas, M. 2009. InteractivaySteneration
for Writers: Lessons Learned from the Wide Ruledthduing
Tool. InProceedings of DAC ‘Qdrvine, CA.

Skorupski, J; Jayapalan, L; Marquez, S; & Mateas, 2d07.
Wide Ruled: A Friendly Interface to Author-Goal RdsStory
Generation. IProceedings of ICVS '0pp. 26-37.

Weber, B.; Mawhorter, P.; Mateas, M.; and Jhala, 2810.
Reactive Planning Idioms for Multi-Scale Game Ab dppear in
Proceedings of the IEEE CIG ‘10

Whitley, K. N. and Blackwell, A. F. 1997. Visualqgramming:
the outlook from academia and industry.Rroceedings of ESP
‘97. pp.180-208.

ultimate goal for this
work is to allow a user
to author real-time 2D
or 3D interactive game
experiences. These|:
further developments
will expand the creative
power and application
of the system by giving

After work, Mark and Julie decide
to spend a romantic evening at the
beach

intelligent, active

Annoying friend finds out

Secret lover dies ‘ Main character spills guts

feedback on the

<< ‘ ‘ >> |

dynamic structure of a ‘
potential stories,

by Figure 7. The Story Canvas reading and interactioninterface for the plot fragment in figure 4.

