
 

Novice-friendly Authoring of Plan-based Interactive Storyboards 

James Skorupski and Michael Mateas 
 

Expressive Intelligence Studio 
University of California, Santa Cruz 

{jskorups, michaelme}@soe.ucsc.edu 
 
 
 

Abstract 
Story Canvas is a visual authoring tool for the creation of 
interactive, generative stories. Aimed at authors without a 
technical background in computational storytelling, our 
system takes an existing author goal-based narrative 
planning architecture and adds a highly visual authoring and 
reading interface to the technology, using the language of 
storyboards and comics as a framework for both authoring 
and interacting with the resulting narratives. In this paper 
we describe Story Canvas and its evolution from our 
previous authoring work, including how our interface 
choices have been driven by our previous experiences with 
non-technical authors, and describe the details of translating 
the visual authoring constructs into story plans within the 
story generator.   

 Introduction   

The authoring of compelling interactive and generative 
stories traditionally demands expertise in computational 
models of story structure and execution, as well as the 
background knowledge to formulate compelling plot arcs, 
rich dialog, character conflicts, and other story elements. 
The rarity of individuals with this cross-disciplinary 
experience in the relevant technical and creative 
backgrounds motivates our work in this area. To address 
this scarcity, we have created Story Canvas, a novice-
friendly authoring tool for interactive, generative stories 
that presents a visual authoring and reading interface based 
on the spatio-temporal language of storyboards and 
comics. It is a major evolution of our previous interactive 
story authoring system, Wide Ruled, and is designed in 
many ways as a response to our experiences with that 
system in our multiple class room evaluation sessions 
(Skorupski 2009).  
 Our underlying story planner is based on the 
UNIVERSE story model introduced by Michael Lebowitz 
in 1985, in which he described an HTN-style model of 
story structure and execution based on hierarchically-
arranged author goals that represent the story intentions of 

                                                 
This material is based upon work supported by the National Science 
Foundation under Grant No. 0747522. 
Copyright © 2010, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

an author, and plot fragments (tasks) that consist of ordered 
steps (including subgoaling) to accomplish goals (1985). 
Wide Ruled, our previous work, is a UNIVERSE-based 
interactive textual story authoring system utilizing a 
traditional GUI complimented by non-technical narrative 
terminology, natural-language descriptions of technical 
plan components, and step-by-step guidance for the more 
complex tasks (Skorupski 2007, 2009)1. While it allows 
many users with little or no programming experience 
(“non-technical” or “novice” authors) to create interesting 
stories, it still suffers from a number of conceptual hurdles 
for these authors. Creating  complex precondition 
constraints, binding and referencing data variables, and 
managing large story hierarchies have all proven to be 
troublesome in previous evaluations of Wide Ruled. Story 
Canvas  addresses  these difficulties by abstracting away 
from the underlying story planning model and handling 
some of these complexities automatically. It introduces a 
richer, visual method of storyboard-based storytelling and 
provides a visual interactive representation of the high 
level story structure that we hope will allow larger 
audience of novice authors to utilize the power of our 
computational storytelling model. Story Canvas generates 
stories in the reactive planning language ABL (Mateas & 
Stern 2002). While our system utilizes only a subset of the 
entire ABL language, the implicitly concurrent capabilities 
of the planner allowed us to easily implement interactive 
features of the story model, and allow for future 
enhancements of the underlying story model such as fully 
concurrent story plans, and integration into external game 
engines (McCoy et al 2008, Weber et al 2010). In this 
paper we introduce the Story Canvas interface, describe 
how its interface components and features are motivated by 
our previous experience with the Wide Ruled story 
authoring environment, and describe our novel method of 
translation from the storyboard interface to the underlying 
reactive planning code for the story generator. 

Related Work 

The motivation behind our chosen storyboard model of 
interaction is based on previous analysis of comics and 

                                                 
1 Wide Ruled is freely available at: http://eis.ucsc.edu/Wide_Ruled 



storyboards, and the success of domain-specific visual 
programming languages. The sequential art of storyboards 
have been an extremely effective spatio-temporal 
visualization technique for films, comics, graphic novels, 
computer animation, and game design. It has been the 
subject of extensive analysis (Eisner 1985, McCloud 
1993), and provides a background for the design of our 
authoring system and the visual metaphors used to interact 
with the underlying model. With Story Canvas, we have 
moved the author further away from the underlying code 
and structured editor style of our previous work and 
stepped into the visual domain. While general visual 
programming has traditionally been argued as ineffective 
and inefficient for large and complex systems (Whitley 
1997), domain-specific visual languages have been 
successful in many practical instances. These include the 
sound processing and music synthesis tools such Max/MSP 
and Pure Data, and user interface builders in programs like 
Eclipse and Visual Basic/C++ . Closer to our domain of 
interactive media, systems such as Storytelling Alice and 
Game Maker2 have successfully provided visually enriched 
game authoring experiences, but require some 
programming of textual scripts to create complete games 
(Kelleher et al 2007). Kodu, introduced in 2009, is a 
successful and completely visual game programming 
environment, but it is limited to a uniform model of 
physical movement and interaction, without support for the 
abstract computational structures and alternative non-
physical interactions often desired in interactive narratives 
(MacLaurin 2009). Storyboards and comics are not a new 
interface metaphor, and have previously been used to 
automatically visualize generated story plans from domains 
authored in a non-visual fashion (Jhala et al 2008, Pizzi et 
al 2008). From the space of comic-based programming 
work, previous research by Fernaueus and Kindborg et al 
discusses graphical rewrite rules as well as more complex 
general programming constructs represented in comic form 
(2006, 2007). While this work focuses on purely graphical 
modifications of visual objects, our system combines the 
explicit visualization of story objects with representations 
of abstract logic and computational constructs specific to 
the domain of UNIVERSE stories. Gingold’s Comic Book 
Dollhouse used author-created comic strips representing 
static story graphs and used simple graphical triggers to 
allow reader navigation of the graph (2003). Our work 
aims to combine the flexibility of a general visual 
programming language and with the simplicity and 
resilience of a structured editor by utilizing the specific 
domain of UNVERSE stories to inform our visual design 
and user interaction, and relying on this restricted domain 
to avoid the potential visual clutter and scaling pitfalls of 
general visual programming. 

Story Model 

The story generation model in our system is based on the 
HTN-style UNIVERSE model of story generation 

                                                 
2 http://www.yoyogames.com/make 

(Skorupski 2009). It models the story structure (planning 
domain) as a set of hierarchical plans that encompass one 
or more ways to accomplish a story goal for the author. 
Like Wide Ruled, a Story Canvas story contains a set of 
author-created story objects, represented as “Characters” or 
“Environments”, each with associated attribute-value trait 
pairs, and relationships to other story objects, along with a 
strength value for each relationship. Stories also contain a 
set of “Plot Point Types”, which define types of episodic 
attribute-value data stores which are then instantiated as 
“Plot Points” and utilized only during the story generation 
process. “Author Goals”, with optional story object 
parameters, are the primary unit of story planning in this 
tool, each containing one or more “Plot Fragments” that 
describes a set of actions that fulfill its parent author goal. 
Plot fragments have precondition constraints that must all 
be true before execution. These constraints rely on the 
current state of the story world during generation and can 
also bind story objects (characters, environments, and plot 
points) and their attributes for later use in that same plot 
fragment. Additionally, plot fragments contain a set of 
sequential “Story Actions” that can modify the story world 
during execution. These actions can modify story 
characters, environments, and plot point instances captured 
in the precondition, create and delete plot point instances, 
calculate new values, and output parameterized text (in the 
form of narration, speech and thought bubbles).  
 Story generation in Story Canvas begins with a top-level 
initial author goal, which randomly selects amongst all 
executable plot fragments with valid preconditions, and 
then sequentially executes all of its contained story actions 
to successfully complete a story. If the generator 
encounters a story action that pursues another author goal, 
the process repeats and a new plot fragment is selected to 
accomplish the subgoal. The relationship between author 
goals and their associated plot fragments describes a 
potential tree-like space of stories, in which a single 
generated story is represented as a traversal of the tree, as 
seen in figure 2. The result of this story generation process 
is a single story instance among many potential stories, 
represented in Story Canvas as a series of storyboard panes 
visualized on the screen, as is seen in Figure 5. Readers of 
the story interact with these visual stories using a modified 
form of Wide Ruled’s interactivity model, which involves 
author-specific interactive actions that trigger interleaved 
goals at any time during generation (discussed later).  

The Story Canvas-ABL Connection 

Each story world in our system is represented by an ABL 
program that contains story object information along with 
hierarchical behaviors that mirror the relationship between 
author goals and plot fragments in the Story Canvas story 
model. In our case, a single story world represents a single 
ABL “agent” that is executing a story plan while 
interacting with the interface to the user. The author goals 
and plot fragments are translated into ABL behaviors, and 
the initial story object information is translated into types 
and instances of ABL Working Memory Elements (or 



WME’s) (Mateas & Stern 2002). Each time the author 
makes changes in the storyboard interface, Story Canvas 
generates updated code with the corresponding changes. 
During generation, this ABL agent is launched, and 
proceeds to asynchronously communicate with our 
storyboard interface, transmitting user interactions to the 
planner, and receiving information about the resulting story 
plan as it is generated. Figure 1 depicts the architecture of 
these translation and generation steps. In this diagram, the 
“ProxyBot” element is an asynchronous arbitration layer 
than handles communication with the Story Canvas 
interface. The generation architecture is similar to that of 
the ABL Wargus and ABL Starcraft project architectures 
(McCoy et al 2008, Weber et al 2010).  
 

 
Figure 1. The Story Canvas planning architecture, depicting 
the translation from the story model to ABL plans, and the 
generation of a story instance. 

Authoring in Story Canvas 

Constructing a Story Canvas story world requires the 
author to create a set of objects upon which the story 
structure acts (characters, environments, plot point types), 
as well as the story structure itself (author goals and plot 
fragments). Here, we will focus on the two most complex 
aspects of the interface: authoring the story hierarchy, and 
creating plot fragments. In the following sections, we will 
describe the interface for authoring each component, how 
this interface has evolved from its equivalent in Wide 
Ruled as a response to our previous lessons learned, and 
finally, how this feature is implemented in the ABL 
planner.  

The Author Goal and Plot Fragment Hierarchy 
The interface for viewing and modifying the goal-fragment 
story space is shown in figure 2, which depicts a sample 
murder mystery story in the Story Canvas interface. Goals 
are represented by dotted outlines around groups of labeled 
plot fragments. This hierarchical layout is automatically 
generated and adjusted as new author goals and fragments 
are created and old ones are deleted by the author. In order 
to deal with potentially very large story trees, the interface 
can be panned and zoomed across the hierarchy. Here the 
author can create, delete, and edit goals, arrange fragments, 
and create empty fragments and delete existing ones. The 
editing of individual plot fragments is more complex and 
described in the next section. It is important to note that 

this story hierarchy is not a strict direct acyclic graph. Plot 
fragments can subgoal author goals recursively, 
represented by the dotted arrow connecting two author 
goals in the tree. In addition, a goal can be subgoaled by 
more than one plot fragment throughout the story, and 
therefore appear in multiple places in the hierarchy. 

 
Figure 2. The Story Canvas story structure interface. Groups 
of plot fragments are contained within author goals, and each 
plot fragment can be connected to one or more author goals, 
represented by edges in the hierarchy.  

Lessons learned: visualizing large story spaces. Wide 
Ruled used a simple hierarchical list to depict its story 
structure, which proved to be unwieldy for large story 
spaces. The move to a zoomable, pannable visual hierarchy 
interface allows authors to deal with much larger story 
spaces. A story world in our system can be disconnected 
into multiple hierarchie: a single author goal is designated 
as the start goal (in figure 2, the top-most goal is the start 
goal) before story generation begins, but independent story 
trees may exist in the story world at the discretion of the 
author. This interface makes it easy to spot distinct 
hierarchies (see the two small hierarchies at the bottom of 
figure 2). Multiple hierarchies can be a remnant of an 
incompletely-authored story or a failure to include an 
appropriate author goal in a plot fragment (a bug), or they 
may be intended for activation during generation by an 
interactive action specified by the author. 
Implementation: From story trees to behaviors. Story 
Canvas goals and fragments are converted into ABL 
behaviors for execution. All fragments for a given author 
goal are converted into multiple behaviors with the same 
method signature, and ABL’s behavior arbitration 

sequential  behavior  MakeDrama () { 
 precondition  { } 
 subgoal  Introduction(); 
 subgoal  TheEncounter(); 
 subgoal  Conflict(); 
 subgoal  TheFight(); 
 subgoal  LoversRevealed(); 
 subgoal  ChooseLoverOrHusband(); 
 subgoal  Conclusion(); 
} 
... 

Figure 3. A plot fragment for the initial author goal 
“MakeDrama" for our example story, in (abridged) AB L 
code. 



mechanism analyzes preconditions and automatically 
selects a valid plot fragment during story generation 
(Mateas & Stern 2002). Figure 3 shows the ABL-encoded 
example of a single plot fragment for the author goal 
MakeDrama in an example story. Here, we have no 
precondition, and sequentially execute seven author goals 
in order to complete the story. These author goals may 
have plot fragments that in turn call other author goals, 
resulting in our hierarchical structure. 

Plot Fragments 
Story Canvas presents a plot fragment as a set of story 
panes for both the precondition and the story actions, and 
hides some of the complex computational constructs that 
caused problems for non-technical authors in our previous 
evaluations of Wide Ruled. Figure 4 shows a sample plot 
fragment being edited in Story Canvas. Precondition 
constraints are contained in the left-most pane, and the rest 
of the panes contain story actions. Below each story pane 
is a smaller pane, which contains abstract, non-visual 
constraints and story actions, that affect elements that will 
not be visible to a reader of the resulting story (plot point 
constraints and modifications, and calculations of new 
values are located in these panes). If an action pane only 
has non-visible actions, then it will not be displayed during 
story generation. As a plot fragment is created, the author 
can zoom and pan in this interface, resizing elements at 
will to fit into each story pane. While there is always a 
single precondition pane, there can be any number of story 
action panes in a single plot fragment. 

Plot Fragment: Authoring Preconditions 
During generation of a story in Story Canvas, the 
precondition for each plot fragment is a list of 
requirements that determines whether it is eligible to be 
selected as a possible way to complete an author goal. 
These requirements are a list of constraints on the traits and 
relationships within characters, environments, and plot 
points, and every constraint must be true simultaneously 
for the plot fragment to be valid and ready to use within a 
story. In addition to providing an eligibility test, 
preconditions bind characters, 
environments, and plot points 
to local variables for use and 
modification within the plot 
fragment.  
 As seen in figure 4, these 
constraints are represented as a 
graph of character and 
environment icons. Because 
preconditions are meant to 
capture characters, 
environments, or plot points, 
which are dynamically selected 
during story generation, their 
appearance is not known 
during the time of authoring. 

These “blank” icons therefore represent unknown, 
potential story objects, and correspond to objects placed 
into the story action panes on the right. Intra-object 
constraints on individual objects, such as “age > 19” or 
“name != John” are contained within the small box 
hovering next to each icon. Inter-object constraints, which 
relate two dynamically bound objects, are represented by 
an arrow between the icons, showing that those two objects 
have an inter-dependency  
Lessons learned: eliminating temporary variable 
bindings. This process of naming and referencing a 
variables within a plot fragment was a major problem for 
non-technical users authoring stories in Wide Ruled 
(Skorupski 2009). The graph-based approach constraint 
authoring approach avoids the tedious and confusing 
management of variable name bindings and references. We 
have eliminated explicit name management by visually 
linking story objects to the bindings in the constraint graph.  
Implementation: From graphs and text boxes to ABL 
preconditions. Figure 5 shows the ABL code that 
corresponds to the plot fragment depicted in Figure 3. The 
precondition block in figure 5 depicts the binding of 
character, environment, and plot point information stored 
in various WME objects. Within ABL, binding a field to a 
local variable is represented by the ::  symbol, while 
standard java-style comparison operators are used to 
compare fields to variables and literals (Mateas & Stern 
2002). The management of variable names is completely 
hidden from the author. Rather, constraints are depicted as 
graph relationships between objects in the authoring 
interface.  

Plot Fragment: Authoring Story Actions 
Story action panes are depicted to the right of the 
precondition pane in figure 4. Actions can subgoal author 
goals, modify objects captured in the precondition, 
create/delete plot points, calculate new values, display 
static or captured objects with varying poses and 
composition, and output parameterized text in the form of 
narration blocks, speech bubbles, or thought bubbles. 
Modification of the traits of characters/environments is 

 
Figure 4. The Story Canvas plot fragment editor. Silhouetted objects represent dynamically-
bound story objects, and images represent static elements.  



shown as a small box hovering next to the unknown icon 
of a captured object or static image of pre-selected object. 
Editing of relationships between characters is depicted as a 
graphical link between avatars, similar to the inter-object 
constraints in the precondition pane. Plot points are 
modified (indicated by small box), created (indicated by a 
plus sign), and deleted (indicated a minus sign) in the 
bottom non-visible pane, along with the creation of 
calculated values. Like in the precondition pane, 
dynamically bound characters are displayed as colored 
silhouetted icons, and statically chosen objects are 
rendered with their associated image directly in the 
authoring interface. Parameterized text can be displayed as 
a narration block (as seen in the first and last story panes in 
figure 4), a thought bubble, or a speech bubble. The 
locations, sizes, and orientations of captured and static 
story objects, narration, speech and thought bubbles, as 
well as text size, are customizable by the author, to allow 
for varied and interesting compositions.  
 In Wide Ruled, story actions were strictly ordered lists 
of actions. In the domain of storyboards, actions exist on a 
2D plane, and may not clearly reveal the underlying linear 
ordering of the actions in the ABL story plan, which can 
affect the resulting displayed information. In order to deal 
with this ordering ambiguity, Story Canvas enforces the 
rule that parameterized text, calculations, and 
modifications to objects may only reference information 

contained within previous panes. This is seen in figures 6 
and 7, where new trait values are calculated before their 
use in the next pane. Subgoaling in a plot fragment is 
displayed as a narrow story pane with a dotted outline 
containing an author goal name and the story objects to be 
passed as parameters to that author goal. The author goal to 
be subgoaled, along with its contained plot fragments are 
shown on screen below the current plot fragment for quick 
access to the editing views for those elements.  
Lessons learned: Hiding named variable creation and 
reference. Like in the precondition pane, we hide variable 
bindings and references within the story action panes to 
simplify the authoring process. Whenever a story action 
item needs to use the information stored in a captured story 
object (or value created in a previous pane), the user 
double clicks on the object or calculation to be edited and 
they can then select from a list of available information: 
previously calculated values, any trait or relationship value 
within previously captured or used story objects, or any 
attribute of a captured plot point. No variable names are 
generated – a user selects the required piece of data from a 
list of icons and attributes names that appear during editing 
and a this connection is then visually represented as an 
arrow to the referenced object or calculation. These arrows, 
shown stemming from the narration text box in the first 
action pane of the fragment in figure 4, are only visible 
when an object/calculation is selected, to avoid cluttering. 
Implementation: From story panes to ABL plans and 
back. Plot fragments are translated into ABL behavior 
code like that shown in figure 6. A single behavior 
encompasses all the story panes in a plot fragment. In the 
code sample, the mental_act  construct is a block of raw 
java code that we use to modify the working memory state 
of the objects in our story and calculate new values. All the 
actions for a single pane are executed in the order they 
were created, followed by a command (or “primitive 
action” preceded by the act  keyword) called 
showStoryPane(…)  that gathers and passes along the 
dynamically bound story plan information relevant to the 
corresponding graphical storyboard pane to the Story 
Canvas interface. This command immediately sends the 
bound plan information to the interface which accesses 
stored assets (story object graphics and visual composition 
information) that are rendered to the screen for the reader. 

Reading and Interactivity 

The reading and interaction interface for a generated story 
is very similar to the authoring interface, as shown in 
figure 7. The plot fragment shown in figure 3 is displayed 
to the reader, with unknown icons filled in with characters 
and environments, and object modification, information 
reference arrows, plot point modifications, and calculation 
actions hidden from view. This interface displays a 
continuous comic scrolling from left to right until the story 
is finished, using the arrow buttons to control the 
generation pace and browse previous panes. Story Canvas 
implements an asynchronous goal execution model of 
interaction, in which story authors specify a set of 

sequential  behavior  TheEncounter () { 
 precondition  { 
  (CharWME id::chID1 Name::name1) 
  (CharWME id::chID2 Name::name2 Husband==chID1) 
  (CharWME id==chID1 Friend==chID2) 
  (CharWME id::chID3 Name::name3 Loves==chID2) 
  (CharWME id==chID2 SecretlyLove==chID3  
    FavPlace::place) 
  (EnvWME id::envID1 Name==place Description::desc  
    daytime==true)  
  tensWME = (TensionPPWME DramaLevel > 0.5) 
  progWME = (ProgressPPWME HusbandSuspects == false ) 
 } 
 ... 
} 

Figure 5. The (abridged) ABL code generated for the 
precondition story pane in figure 4. 

sequential  behavior  TheEncounter () { 
 precondition  {...} 
 mental_act  { 
   workingMemory.delete(tensWME); 
   double  newWifeVal = 
     workingMemory.get(chID2).getWifeVal() – 0.1; 
 } 
 act showStoryPane(1, chID1, chID2, name1, name2, envName); 
 subgoal  IntroduceFrank(chID1, chID2); 
 mental_act  { 
   workingMemory.get(envID1).setVisited(true); 
   workingMemory.get(chID2).setSuspicious(true); 
   workingMemory.get(chID2).setWifeVal(newWifeVal);  
   workingMemory.get(frankID).setConfusion(2.0); 
   double  newSecLove = 
     workingMemory.get(chID1).getSecretLoveVal() – 0.1; 
 
 } 
 act showStoryPane(2, chID1, chID2, chID3,envID1, name1); 
 mental_act  { 
  workingMemory.get(chID1).setSecretLoveVal(newSecL ove); 
  workingMemory.add( new SuspicionPPWME(chID3)); 
  progWME.setHusbandSuspects(true); 
 } 
 act showStoryPane(3, chID1, chID3); 
 subgoal  loversConflict(chID1, chID2, envID1); 
} 

Figure 6. The (abridged) ABL code generated for the story 
action panes in Figure 4. 



“Interactive Actions” for each plot fragment, which can be 
executed at any time during the execution of that fragment. 
These actions are separate goals, which can modify the 
story world and output completely new panes to the screen. 
During generation, when an interactive action is activated, 
the current fragment is halted, and the interactive action is 
executed completely, allowing for a dynamically 
interleaved story with full authorial control over what a 
reader can do at different times during generation. 
Lessons learned: Contextually-relevant interactive 
actions., Wide Ruled had a similar interactivity model with 
a global set of interactive actions. User feedback indicated 
that creating global interactions that make sense at every 
point in a story is difficult, so Story Canvas allows the 
author to associate interactive actions with specific plot 
fragments (Skorupski 2009). Those actions only appear 
during the execution of their associated fragments. 
Implementation: Reacting to input. At its core, the ABL 
reactive planner is designed to execute concurrent plans 
and interact with ever-changing inputs from a dynamic 
external “world”. In our case, this “world” is the reader 
interacting with our storyboard interface. By using the 
“daemon behavior” design pattern, described by Weber et 
al, we are easily able to constantly monitor for input from 
the interface with a parallel behavior, and interrupt 
execution of the current story plan at any point in time to 
wait on a user’s command or to process a request to 
activate an interactive action (2010). 

Future Work and Conclusions 

We have shown here the evolution of our latest story 
authoring interface, how it has evolved according to the 
evaluation of our previous work, and the technical 
underpinnings that drive its capabilities. The next steps in 
our work will involve evaluating our system with a new set 
of non-technical authors, comparing the complexity and 
quality of stories created with Story Canvas with those 
made with Wide Ruled. From a technical perspective, we 
will implement reactive, intelligent story analysis features 
that give constant feedback during the authoring process to 
visualize the coverage of the potential story space, and 
locate areas of disuse, or infinite recursion. We will also 
implement additional comic book storytelling techniques, 
such as varied story pane size, arrangement, and ordering, 
line drawing styles and variations of shading. Finally, the 
ultimate goal for this 
work is to allow a user 
to author real-time 2D 
or 3D interactive game 
experiences. These 
further developments 
will expand the creative 
power and application 
of the system by giving 
intelligent, active 
feedback on the 
dynamic structure of a 
potential stories, by 

embracing a larger set of visual techniques from a proven 
and effective storytelling medium, and ultimately by 
applying these methods to author richer, more dynamic 
types of interactive story experiences. 

References  
Eisner, W. 1985. Comics and Sequential Art. Tamarac, FL: 
Poorhouse Press. 
Fernaueus, Y., Kindborg, M., Scholz, R. 2006. Rethinking 
Children's Programming with Contextual Signs. In Proceedings 
IDC 06, Tampere,Finland. 
Gingold, C. 2003. Miniature Gardens & Magic Crayons: Games, 
Spaces, & Worlds. Master’s Thesis. School of Literature, 
Communication and Culture, Georgia Institute of Technology. 
Jhala, A., Rawls, C., and Young, R. M. 2008. Longboard: A 
Sketch Based Intelligent Storyboarding Tool for Creating 
Machinima. In Proceedings of FLAIRS '08, pp. 386--391. 
Kelleher, C., Pausch, R., and Kiesler, S. 2007. Storytelling alice 
motivates middle school girls to learn computer programming. In 
Proceedings of CHI '07. pp 1455-1464. 
Kindborg, M. and McGee, K. 2007. Visual programming with 
analogical representations: Inspirations from a semiotic analysis 
of comics. J. Vis. Lang. Comp.pp99-125.  
Lebowitz, M. 1985. Story Telling as Planning and Learning. 
Poetics 14, pp. 483-502. 
MacLaurin, M. 2009. Kodu: end-user programming and design 
for games. In Proceedings of FDG '09. Orlando, Florida, April 26 
- 30, 2009. 
Mateas, M., and Stern, A. 2002. A Behavior Language for Story-
Based Believable Agents. IEEE Intelligent Systems 17(4):39–47. 
McCloud, S. 1993. Understanding Comics. New York, NY: 
Kitchen Sink Press/Harper Perennial. 
McCoy, J, and Mateas, M. 2008. An Integrated Agent for Playing 
Real-Time Strategy Games. In Proceedings of AAAI. AAAI 
Press, 2008, pp.1313–1318. 
Pizzi, D.; Cavazza, M.; Whittaker, A.; & Lugrin J-L. 2008. 
Automatic Generation of Game Level Solutions as Storyboards. 
In Proceedings of AIIDE '08, pp. 96–101 
Skorupski, J, and Mateas, M.  2009. Interactive Story Generation 
for Writers: Lessons Learned from the Wide Ruled Authoring 
Tool. In Proceedings of DAC ‘09, Irvine, CA. 
Skorupski, J; Jayapalan, L; Marquez, S; & Mateas, M. 2007. 
Wide Ruled: A Friendly Interface to Author-Goal Based Story 
Generation. In Proceedings of ICVS ’07. pp. 26-37. 
Weber, B.; Mawhorter, P.; Mateas, M.; and Jhala, A. 2010. 
Reactive Planning Idioms for Multi-Scale Game AI. To appear in 
Proceedings of the IEEE CIG ‘10. 
Whitley, K. N. and Blackwell, A. F. 1997. Visual programming: 
the outlook from academia and industry. In Proceedings of ESP 
‘97. pp.180-208. 

 
Figure 7. The Story Canvas reading and interaction interface for the plot fragment in figure 4.  


