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Abstract

The assumption that the speed of light is infinitelerlies many
established models in computer graphics and viskmsearchers
exploring time-of-flight based sensors are movintp ia domain
that implicitly requires relaxation of this assuipt The classic
rendering equation provides a rigorous foundatioor f
understanding light transport, but fails to encosspthe transient
effects of light propagation at finite speeds.His tpaper, we will
introduce a physically-relevant generalization bé trendering
equation and a method for approximating this eguatiand
define a summary measure of transient light padtewhich is
used as a basis for general sensor model.

Keywords: Computational light science, time-of-flight, renther
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1 Introduction

There is a growing interest in time-of-fight (TOR)ased
computer vision applications [Haker 2007, Oprise2607]. In
this paper, we seek a general, physical explanatibrthe
measurements made in this field. This is our cembativation.
The key observation that drives our work is thatiels outside of
TOF applications assume steady-state light transHomever, to
date, there is no established theoretical frameworknotivate
reasoning about transient light transport that eygplcomputer
graphics or vision relevant assumptions and mod&sa high
level, we aim to use basic physics in combinatioith veore
graphics theory to assemble our framework basedh arovel
formulation of global illumination that does nosase an infinite
speed of light.

Critical to our work is the distinction between alg-state and
transient light transport. Steady-state transpontesponds to the
familiar case in computer graphics or vision, iniehhthe speed
of light is conventionally assumed to be infinite akes no time
to cross any distance). We interpret the value pixal as the

amount of light received at that pixel. This valseot a function

of time. Videos may be interpreted as a sequendenafes of

different but static worlds. Fundamentally, steathte light

transport describes an amount of energy, a nunfhgnaions, or

the irradiance at a pixel.

In transient light transport, we assume that theedpof light is
some finite value. As light scatters around a scénhdakes
different paths, and longer paths take a longee timtraverse.
Even a single pulse of light can evolve into a claxpattern in
time. Fundamentally, transient transport descrijzeser, a rate of

incoming photons, or irradiant flux at a pixel, whj importantly,
is measured as a function of time.

In this paper, we will introduce a physically-reden
generalization of the rendering equation, called tfansient
rendering equation and a method for approximating this
equation, called theellular approximation procedureNext, we
will define a summary measure of transient lighttqras, called
the transient photometric response functioand used this
function as a basis for general sensor model cahedTPRF
sensor

2 Related Work

To situate our work with respect to existing resbamwe looked
for research areas that displayed detailed matheahanalysis,
light-specific models, and a concern for transiffeécts. Figure 1
summarizes the overlap of those research areaowitivork. We
will look at two research areas based on sensiagehl world,
and one about generating images of synthetic worlds
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Figure 1. The overlap of related research areastivé propertie
that our work requires.

2.1 SONAR

SONAR (SOund Navigation And Ranging), is a techmidbat
uses sound propagation in a medium such as aiataruo detect
and locate remote objects. The speed of soundxisrsiers of
magnitude slower than the speed of light, and fbezesasier to
detect. Work in SONAR has produced intricate modsfighe



effects of many surfaces with complicated scattgpnoperties
[Russell 1996]. These models yield the ability¢oover detailed
information about the world from samples that diéscfunctions
of time. Russell et al have a pipelined analytit@mework
including emission, propagation, scattering, medigffiects,
sensors, and data interpretation [1996].

Unfortunately for us, SONAR models are specialifedsound

propagation. With sound, diffraction is pervasiaed there are no
simple ray sensors or projectors, whereas the d@gpisstrue in

computer graphics or vision. The tie-in to our wdek that

SONAR applications are powerful but cannot tell amut the

properties of light propagation.

2.2 LIDAR

LIDAR (Llght Detection And Ranging), is roughly thigght
analog of SONAR. The speed of light, while exceghjirfast,
becomes noticeable over long distances. Short polsaser light
from an emitter can be used to trigger time-delageftbctions
from remote objects in a scene [Kamermann 1993myzwed
with  SONAR, LIDAR models are extremely simple. Many
assume just a single bounce in the light path aschal number
of distinct paths [Jutzi 2006].

Unfortunately for us, LIDAR models cannot handleerses of
arbitrary complexity. The tie-in to our work is thahile LIDAR
applications do reason about light as a functiortimi, even
taking into account transient effects, they are simple and
specialized for our purposes.

2.3 Rendering equation

In computer graphics, the “rendering equation” meféo a
description of steady-state light transport in @nsc [Kajiya
1986]. Solutions to this equation are what is chligiobal
illumination, and give a physical explanation fdrserved light.
The rendering equation can be seen as the thearbtisis for a
vast array of light transport models. It adapts tadiative
transport equations from physics with graphicsvahe
approximations, such as the existence of a bidineat scattering
function, an infinite speed of light, and a worldithveut
diffraction. The rendering equation usually comeone of two
forms, the vacuum rendering equation or volume egnd
equation, depending on the representation of thedwdhe
introduction of the rendering equation suggestediew way
computing images, by simply evaluating an integraihout,
leaving the physics to the model.

In linear operator form, the rendering equationstated as
follows: R = Ry + GR, whereR is the total radianceR, is the
radiance due to light emission, a@ds the global light transport
operator. Note that this is a recursive definitiiere, G includes
geometry and visibility terms. Kajiya presented tbeginal
rendering equation in detailed integral form, hoerewe present
it operator form here to parallel our definition tfe transient
rendering equation [1986].

Unfortunately for us, while the rendering equat@gives us a very
detailed and rigorous analysis of light transpiirjoes not take
into account the effects of transient light propaga The tie-in to
our work is that the rendering equations gives mroon story to

a huge space of rendering applications, but neesisg small
tweak to account for propagation delay.

3 Transient Rendering Equation

In order to rigorously describe light as it scattaround a scene,
we must provide a solution for global illuminatidRecall that the
traditional rendering equation gives an exact dgson of the
light at every point and in every direction withanscene, subject
to an infinite speed of light. In this section, wal adapt it to
describe a function of time that also depends ersfieed of light.

To begin, the radiant flux at a point (in a direati at a time) is
due to the light that is emitted at that point tfiat direction, at
that time) plus the light that scatters throughdin other points a
distance away. In operator form, this is written Rs= R, + GR,
where R is the total radiant fluR, is the locally emitted flux,
and G is the global light transport operator. SpecificalR =
f(X,w,t) is a function of a point, direction, and time. Our
relation looks identical to the traditional renderiequation, but,
importantly, it will describe power instead of egyland take into
account the speed of light using the method weshitiw next.

Global light transportG is the composition of two physical
processes, propagation and scattering. Propagatios radiant

flux into irradiant flux, taking light from one sface and across a
distance to another. Light from one point arrivasaaother

delayed by a time proportional to its distance.tm other hand,
scattering turns irradiant flux into radiant flulgking incoming

light and bouncing it back out. Because scattetaiges place

around a single point, and no distance is coveredime delay is

incurred. We model scattering using a bidirectiosehttering

distribution function (BSDF) [Heckbert 1991]. Figu? illustrates

this process.

Figure 2. Global light transport is the compositarpropagatiol
and scattering. Propagation moves light betweeiaces, and
scattering redirects light at the point of incidenc

Now we state our transient rendering equation.
R = Ry + SPR

We take P to include the geometry and visibilitynts, and S to
be analogous to scattering in traditional rende(igxgept that it
operates on flux). This relation tells us the poaflight at every
point, in every direction, at every time. This isdéed the
description of global illumination in terms of fluthat we
required. This relation can be expanded into irtleigmrm, but we
need to commit to additional details about the dad write it.

Recall that Kajiya's original statement of the reridg equation
corresponded to what is now known as the vacuumnderamg



equation, which assumes that the world is populbgethfinitely
thin surfaces separated by a transparent vacuum.

The transient rendering equation echoes the steictd the
traditional rendering equation because both wemvetd from
physics, and are readily specialized into vacuurd @alume
variants. We have chosen the term “transient” beedbe key
distinction between ours and the traditional remdeequation is
that our relation describes the short-term (andeseaxily time-
varying) effects of the propagation of light. Wewndave a
physically-motivated description of global illumiien for
arbitrary scenes.

4 Cellular Approximation Procedure

The transient rendering equation is not in a fountable for
direct evaluation. The definition is recursive, amd such, we
need an expression in terms of only given valudsrbeve can
write out its solutions.

4.1 Derivation

We will begin the derivation with the operator foahthe
transient rendering equation.
R =R, +GR

Next, we moveiR to the left hand side, isolatirty.
R—GR =R,

We can collecf — G as a single operator to applyRo
(I-G)R =R,

We apply the inverse df— G to both sides, yielding a non-
recursive definition.
R=(-G) 'R,

We expand! — G)~* using the Neumann series.
R=(+G+ GG+ GGG + )R,

Finally, distributing this operator witR, yields the following
expression:
[R=R,+ GRy + GGRy + GGGRy + -]

This expression says that the final flux is theiahiflux plus the
once-scattered initial flux, plus the twice-scattemitial flux, etc
corresponding to intuition.

4.2 Model

Now that we have a non-recursive definition Ryrwe next need
to develop a model that gives a form to operat@rand R,.

Again, we adopt a similar model to that of the preation of the
traditional rendering equation. That is, we assuhe world is
populated by a collection of thin surfaces in a wan.

Specifically, we will model surfaces as collectioms flat

interfaces with given geometry and scattering prioge (in the
form of a BSDF). Note that using a BSDF allows powe be
gained or lost at each point on an interface. Tgexification of
interfaces means that this procedure will genexpfgroximations

to the transienvacuumrendering equation. Because most of the

space we model is empty, light propagations fréela straight
line. For generality, we will allow the speed afht to vary in
distinct regions of free space. Finally, we sayt @l interfaces

have a known light emission pattern over time. Thigial
emission function could easily be computed froningpte model
of point lights floating in free space.

Next, we will define some notation that is neceggarformally
describe our model.

R; is the radiant flux aftek

R, (X, w, t) scattering eventsy is a point,
n is a directiont is a time.
(X, @,6) I, is the irradiant flux aftek

scattering events

R, I are the sum oRy, I, for
R, 0,6),1(X, ,1) all indicesk >0 .

N N R*, I* areR, I extended to be
R (X 0,6),I"(X, 0,t) defined in free space.

Ry, I, are given for all
interfaces, describing the light
originating atX.

Ro(X, w, t),[o(X, w, t)

K is the spatially-varying
scattering  kernel  (BSDF)
defined at every point on
interfaces. This should include
effects of refraction.

KX, 0w

Y (X, @) Y is the first point encountered
’ heading in directiom from X.

E is the geometry term: the dot

product of the interface normal

at X with directionY — X

E(X,Y)

D is the propagation time for

DX, Y) light going betweeX andY

Recall that we stated = SP. With the above notation, we can
now define the form of these operatofs.tells us that thek-
scattered irradiant flux is the visible-scattered radiant flux,
attenuated by the geometry term, delayed by theggation time.

Ik = PRk
L(X, 0,t) = G(X,Y(X, w))Ry (Y, nt—D(X,Y(X, w)))
S tells us that th€k + 1)-scattered radiant flux is the sum lof
scattered irradiant flux distributed by the scatigkernel.
Ry = Sl
Ryi(X,0,t) = | KX, 0, 0),(X,0', t)dw'

w!

Using these relations, we can build igpand R, inductively for
arbitrary largek from I, andR, alone, which are givens.

4.3 Procedure

Now we present and algorithm for approximatifigand R*. To
begin, partition the world by adding virtual inteckes so that light
may propagate unobstructed in straight lines witbath cell.



Note that this implies that these cells are conWe. distinguish
three types of interfaces: real, virtual and boupdilustrated in
Figure 3. Real interfaces correspond to actualased in the
world and may have arbitrary scattering kerri€l Virtual

interfaces are like real interfaces, but h&(&, w, w") = § (w —

"), whered is the Dirac delta function. That is to say, tteeg
transparent and scattering through them does rfetctathe
direction of light. Boundary interfaces are thosa touching
another cell of interest, and may be considered htawve
KX, w,w") = 0 for simplicity.

Figure 3. Above illustrates the one possible gartihg of an
abstract 2-D world, where segment R izal (physical)
interface, V is airtual (transparent) interface, and B is a

boundary(ignored) interface. Note that all cells are coave

The core of the procedure is the following. UsandS defined
above to buildR, andI, in an alternating manner. When the flux
represented is as small as desired (due to poseiincscattering),
sum allR;, andI, to form an approximat® andI, respectively.

Note thatR andl are only defined on interfaces. We can define an

I* for X in free space by collecting (with appropriate giglaght
from the final R. Note thatR* =I* by the assumption of the
transparency of free space.

4.4 Discussion

There are a few interesting things to note aboutmadel and
procedure. First, adding virtual interfaces maynsée inflate the
scattering index. However, this process ensurasttte visibility

term normally considered in rendering is alwaysahd thus
ignored in our model. This avoids explicit shadaicalation and
does not otherwise change the results. Next, keepind that as
the flux functions are functions of a point, diieat and time,

they need a suitable representation in practicaltow their

updates to be computed. The accuracy of these seations
will dominate the overall accuracy of the procedbeeause the
procedure itself is derived from an analytical feamork, which,

in some sense, provides tha@rectanswer.

5 Transient Photometric Response
Function

Recall that our original goal was to explain semseasurements.
The transient rendering equation, by itself, tebsfar more than
we need to know for TOF-based computer vision. Vém c
imagine practical sensors that report flux overetiat a specific
point and in a specific direction in response tspecific light

source. In this section we will introduce a funotiwhich will
allow us to model exactly what a sensor measures.

If we look at a restriction of the total irradidhtx function,I*, to

a fixed eye poinE and a viewing directiow, and assume a scene
is lit only by a single, delta function impulse esibn R,, we
have the following definition for theransient photometric
response function (TPRF)

TPRF(t) = I*(E, w, t) = R (Y(E, w),w,t — D(E, Y(E,(u)))|

We chose this name carefully. The tetransientrefers to the
transient rendering equation, from which this fumrctis derived.
The termphotometricrefers to the emphasis on the intensity of
light, as opposed to electromagnetic radiation wéghecific
wavelengthsResponseéndicates that we are concerned with the
results of an impulse. Finallyfunction emphasizes that the
transient photometric response is not just a singlee, but a
function of one variable: time.
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Figure 4. Here we show the derivation of a TPR& gimple
scene. (a) 1-D world with real interfaces A anceige point E,
light source L, and boundary Z (b) Result of transrendering

(c) TPRF at E looking to the right

To see how a TPRF can be derived from a descripgfothe
world, we will work through a simple example, iltceted in
Figure 4. We begin with a simple one dimensionalrlidvo
populated by two interfaces (points) A and B. Siggpthat A is



partially transparent, B is opaque, and both iat$ are partially
reflective. Next, we identify an eye point E andight point L.
Additionally, we have to identify another point @ that we may
form a cell enclosing E and L. Z is an example dfcaindary
interface, while A and B are real.

From this world we would like to derive ati so that we can
define the TPRF at E, say, looking to the right direction ).
Per our approximation procedure, we have a wayebhihg 7* in
terms of givens, such as the initial radiant flixegery interface.
A delta function impulse of light begins at L, st as
Ro(E,w,t) =8(t —0), for w € {-n,+n} (where “left” and
“right” are the only directions in a 1-D world). Wan use this to
define the irradiant flux, at A by simply delaying the light from
E, giving us Ro(4,7,t) =8(t—D(L,A)), with I, and R,
constant zero elsewhere. Now, using the transientdaring
equation, we can build ufp andR;, at A and B for arbitrark to
assemble a suitable Note that boundary interface Z can be
ignored here because it does not participate ittesgzg. Finally,
we can defind* from R. At this point, we know the total flux at
every point in the cells Z-A and A-B, in both ditieos, at every
time. For such a simple world, this evolution proelsi a simple
ray tree, illustrated in sectidmof Figure 4. Now we are ready to
form the TPRF. The TPRF at E is simply the follogzin

TPRF(t) = I'(E, —#,t) = R(A, —f, t — D(E, A)).

Even in this simple example, considerable infororatbout the
scene is encoded in the TPRF, particularly someahg single
measurement could miss. Note in sectiom Figure 4 that the
distance A-B is evident in the separation of puleehe TPRF.

The TPRF is (almost) directly sensed by many exgstiiDAR
applications. However, usually only simple propstiof the
function are examined, such as the time delay betbe first
peak. As presented, the TPRF model corresponds hgldy
idealized sensor, but has important properties wllesee in the
next section that allow us to form a much moreiséal sensor
model.

6 TPRF Sensor Model

When we began this work, we sought to explain genso

measurements. Realistically, sensors are man-mdugsical

devices subject to engineering limitations. Thegger light

sources in sensors we would like to model do nd (@hysically

cannot) pulse for infinitely short periods of timestead, their
output is governed by some envelope in time. Addilly, when

collecting light to form a sample, sensors integrfitix over a
period of time. Furthermore, light travels in diester photons, not
as idealized continuous flux. Finally, real devidemve myriad
internal sources of electronic noise. Taken togethbese
circumstances form a distinct departure from theuagptions of
transient rendering.

We address the above concerns in the design afemsor model.
We allow the trigger light source to have an adbitrenvelope in
time, given by some functiohight(t). The sensitivity to flux
over time for the collection of a single samplealiso allowed an
arbitrary envelopeExposure;(t), for samplei. We ignore the
discrete nature of light because, in practice, wpeet a vast
number of photons to be received for each measurerfmally,
we address noise sources with an all-encompassitutitivee
Gaussian white noise term.

Now we can state our full sensor model, which wetha TPRF
sensor In the following expressior; is thei’'th measurement in
a sequence, anddenotes convolution:

M; = max (0, Noise + f (TPRF * Light)(t) Exposure;(t) dt)
t

To understand this definition, let us examine @sponents. First
consider the function f(t) = TPRF(t) = Light(t). This
corresponds to the idealized observed total flsulteng from an
arbitrary emission pattern at the trigger light meu We can do
this because the TPRF was formulated in terms dfingle
impulse, and convolution allows us to synthesizg waveform
from a superposition of impulses. This is equivaterfeeding the
arbitrary emission pattern into the original tramsi rendering
process. Next, this result is accumulated in thes@eover time.
Simply multiplying f (t) with the exposure sensitivity gives us an
effective measured flux function. Now, all that @&ns is for us to
integrate over time to find the area under thisreuhe result, a
value measured in terms of energy, need only beitbed by a
noise value before representing a hypothetical oreagent from
our model sensor.

It is interesting to note that the example preskimethe previous
section (illustrated in Figure 4) could be intetpckas a simple
LIDAR experiment. In this case, E and L could be lications of
the photo sensor and pulse-emitting laser on dromie platform,
respectively, and A and B could represent a péartteinsparent
foliage layer and opaque ground layer, respectiiehowing the

geometry of this experiment, transient renderingld¢@roduce a
TPRF. In Figures 5, 6 and 7, we illustrate the pssc of

generating hypothetical measurements from a giveRH. The
first shows a representative TPRF. The second shHmeveesult of
convolving the TPRF with the light emission enveopn this

case, we chose a Gaussian curve. Finally, the dastvs a
sequence of simulated measurements in the case bbxa
exposure envelope. These measurements could beacesngith

real sensor measurements in a physical LIDAR erpmnt.

This is a very general but physically motivatedssermodel that
can be used to produce reference measurementsrioyation.
The TPRF encapsulates all of the world dependehtteeanodel,
and thus a single simulated TPRF can be used vatteral
different sensor profiles. We wanted some genegphlsical
explanation of the measurements we make, and nohawe it.
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Figure 5. A representative TPRF derived frdva scene in Figu
4 (spikes represent weighted delta function imm)lse
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Figure 6. Result of convolving the TPRF from Figbreith a
light emission envelope
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Figure 7. A sequence of hypothetical measurendsrized fron
the measured flux function in Figure 6.
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7 Future Research Directions

Our transient rendering framework is a first staprigorously
exploring the ftransient effects of light propagation a
vision/graphics setting. Four new directions ofesgsh that are
opened up from this work are generalizing this nhode
computationally implementing it, building a sensamd exploring
new applications.

To generalize transient rendering, effects suchsuassurface
scattering could be modeled by moving directly tansient

volume rendering, or generating appropriate geometriciliet
(myriad small interfaces in the interior of objgctémd using the
cellular approximation procedure presented in fhéper. The
derivation of our approximation procedure assurhesinterfaces
cannot story energy over time. If we allow an eattiin at each
point on interfaces, we may take into account phosgscence.
Furthermore, wavelength could be properly treatedbking into

account dispersion at interfaces. A solution to randient

rendering equation that included proper treatméntavelengths
would form a complete plenoptic function.

Before computationally implementing our framewdtkyould be

necessary to develop additional details. First,wibuld be

necessary to decide on representations for theftingtions used
in the approximation (such ag,, I;). The functions could be
represented as analytic expressions or collectbpsint samples
which correspond to photons recorded at a spegfiint,

direction, and time. Next, our approximation praged limits

local light transport to individual cells. Presuryabsome

procedure exists for telling which exact regions aeeded to
calculate a specific TPRF. This development of ahotk for

computing dependencies would prove invaluable ipractical

simulator.

Next, sensors could be built that attempt to diyesteasure the
TPRF, to support TPRF-based applications. This iealistic
assumption, given that existing LIDAR systems measiata
similar to what would be needed.

Finally, this work opens up new application are@sansient
rendering may allow 3.0D range finding (shape recpv
including hidden surfaces), or uncover implicit waptions in
traditional 2.5D range finding. If modeled, subsed scattering
parameters may be recoverable from samples in fimsé&ad of
space. Additionally, decomposing the TPRF into Iersgatter
layers may reveal interesting structures of a scene

8 Conclusion

Using only basic physics in combination with coreaghics
theory, we have taken initial steps into explorthg effects of
taking propagation delays for light into account asalled this
transient renderingln doing this, we have defined a physically-
relevant generalization of the rendering equatipmbdifying the
propagation operator to account for the speedgbt land called
this generalization theansient rendering equatioWe have also
defined a method for approximating this equationténrms of
parameters for quite general worlds based on a eonv
partitioning of the scene and called this theellular
approximation procedure Next, we defined a summary measure
of transient light patterns comparable to the ouigfua highly
idealized sensor and called this thensient photometric response
function We then utilized this function in the definitiaof a
sensor model incorporating several physical phenamealled
the TPRF sensor Finally, we proposed a wide array of new
research  directions, including previously unreathab
applications.

We hope that transient rendering can serve as mcipied
foundation for future time-of-flight based compuwgsion.
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